The inverse eigenvector problem for real tridiagonal matrices
Abstract
TBA
TBA
This will be an overview of Prof Stroffolini's research and precursor to the eight-hour mini-course Prof Stroffolini will be giving later in October.
One way of understanding groups is by investigating their actions on special spaces, such as Hilbert and Banach spaces, non-positively curved spaces etc. Classical properties like Kazhdan property (T) and the Haagerup property are formulated in terms of such actions and turn out to be relevant in a wide range of areas, from the conjectures of Baum-Connes and Novikov to constructions of expanders. In this talk I shall overview various generalisations of property (T) and Haagerup to Banach spaces, especially in connection with classes of groups acting on non-positively curved spaces.
The 3d/3d correspondence is about the correspondence between 3d N=2 supersymmetric gauge theories and the 3d complex Chern-Simons theory on a 3-manifold.
In this talk I will describe codimension 2 and 4 supersymmetric defects in this correspondence, by a combination of various existing techniques, such as state-integral models, cluster algebras, holographic dual, and 5d SYM.
Studies of thermal convection in planetary interiors have largely focused on convection above the critical Rayleigh number. However, convection in planetary mantles and crusts can also occur under subcritical conditions. Subcritical convection exhibits phenomena which do not exist above the critical Rayleigh number. One such phenomenon is spatial localization characterized by the formation of stable, spatially isolated convective cells. Spatial localization occurs in a broad range of viscosity laws including temperature-dependent viscosity and power-law viscosity and may explain formation of some surface features observed on rocky and icy bodies in the Solar System.
We develop a novel, fundamental and surprisingly simple randomized iterative method for solving consistent linear systems. Our method has six different but equivalent interpretations: sketch-and-project, constrain-and-approximate, random intersect, random linear solve, random update and random fixed point. By varying its two parameters—a positive definite matrix (defining geometry), and a random matrix (sampled in an i.i.d. fashion in each iteration)—we recover a comprehensive array of well known algorithms as special cases, including the randomized Kaczmarz method, randomized Newton method, randomized coordinate descent method and random Gaussian pursuit. We naturally also obtain variants of all these methods using blocks and importance sampling. However, our method allows for a much wider selection of these two parameters, which leads to a number of new specific methods. We prove exponential convergence of the expected norm of the error in a single theorem, from which existing complexity results for known variants can be obtained. However, we also give an exact formula for the evolution of the expected iterates, which allows us to give lower bounds on the convergence rate.
If you do not know quasicircles, you will understand what they are.
If you hate quasicircles, you will change your mind.
If you already love quasicircles, they will astonish you once more.
Recently, a series of unprecedented leaks by Edward Snowden had made it possible for the first time to get a glimpse into the actual capabilities and limitations of the techniques used by the NSA and GCHQ to eavesdrop to computers and other communication devices. In this talk, I will survey some of the things we have learned, and discuss possible countermeasures against these capabilities.
Seminar series `Symmetries and Correspondences'
We give a classification of open Klein topological conformal field theories in terms of Calabi-Yau $A_\infty$-categories endowed with an involution. Given an open Klein topological conformal field theory, there is a universal open-closed extension whose closed part is the involutive version of the Hochschild chains associated to the open part.
Already Serre's "Cohomologie Galoisienne" contains an exercise regarding the following condition on a field F: For every finite field extension E of F and every n, the index of the n-th powers (E*)^n in the multiplicative group E* is finite. Model theorists recently got interested in this condition, as it is satisfied by every superrosy field and also by every strongly2 dependent field, and occurs in a conjecture of Shelah-Hasson on NIP fields. I will explain how it relates to the better known condition that F is bounded (i.e. F has only finitely many extensions of degree n, for any n - in other words, the absolute Galois group of F is a small profinite group) and why it is not preserved under elementary equivalence. Joint work with Franziska Jahnke.
*** Note unusual day and time ***
I will describe a categorical approach to analytic geometry using the theory of quasi-abelian closed symmetric monoidal categories which works both for Archimedean and non-Archimdedean base fields. In particular I will show how the weak G-topologies of (dagger) affinoid subdomains can be characterized by homological method. I will end by briefly saying how to generalize these results for characterizing open embeddings of Stein spaces. This project is a collaboration with Oren Ben-Bassat and Kobi Kremnizer.
We will discuss our approach to global analytic geometry, based on overconvergent power series and functors of functions. We will explain how slight modifications of it allow us to develop a derived version of global analytic geometry. We will finish by discussing applications to the cohomological study of arithmetic varieties.
I will talk in down to earth terms about several main features of this theory.
We describe how p-adic height pairings allow us to find integral points on hyperelliptic curves, in the spirit of Kim's nonabelian Chabauty program. In particular, we discuss how to carry out this ``quadratic Chabauty'' method over quadratic number fields (joint work with Amnon Besser and Steffen Mueller) and present related ideas to find rational points on bielliptic genus 2 curves (joint work with Netan Dogra).
There has been a great deal of attention paid to "Big Data" over the last few years. However, often as not, the problem with the analysis of data is not as much the size as the complexity of the data. Even very small data sets can exhibit substantial complexity. There is therefore a need for methods for representing complex data sets, beyond the usual linear or even polynomial models. The mathematical notion of shape, encoded in a metric, provides a very useful way to represent complex data sets. On the other hand, Topology is the mathematical sub discipline which concerns itself with studying shape, in all dimensions. In recent years, methods from topology have been adapted to the study of data sets, i.e. finite metric spaces. In this talk, we will discuss what has been
done in this direction and what the future might hold, with numerous examples.