Mon, 15 Jun 2015

16:00 - 17:00
C2

Almost similar p-adic representations: crystalline versus étale.

Junghwan Lim
(Oxford)
Abstract

I will introduce the general idea of p-adic Hodge theory from the view point of a beginner. Also, I will give a sketch of the proof of the crystalline comparison theorem in the case of good reduction using 'almost mathematics'.

 

Mon, 15 Jun 2015
15:45
L6

Coarse rigidity for Teichm\"uller space

Brian Bowditch
(Warwick)
Abstract
We describe some results regarding the quasi-isometric rigidity of
Teichm\"uller space in either the Teichm\"uller metric or the Weil-Petersson
metric; as well as some other spaces canonically associated to a surface.
A key feature which these spaces have in common is that they admit
a ternary operation, which in an appropriate sense, satisfies the
axioms of a median algebra, up to bounded distance.  This allows
us to set many of the arguments in a general context.
We note that quasi-isometric rigidity of the Teichm\"uller metric has recently
been obtained independently by Eskin, Masur and Rafi by different methods.
Mon, 15 Jun 2015
14:15
L4

Hermitian metrics with constant Chern scalar curvature

Cristiano Spotti
(Cambridge)
Abstract

I will discuss some properties of Hermitian metrics on compact complex manifolds, having constant Chern scalar curvature, focusing on the existence problem in fixed Hermitian conformal classes (the "Chern-Yamabe problem"). This is joint work with Daniele Angella and Simone Calamai.

Mon, 15 Jun 2015

12:00 - 13:00
L5

Quiver Invariant, Abelianisation and Mutation

Seung-Joo Lee
(Virginia Tech)
Abstract

In this talk, gauged quiver quantum mechanics will be analysed for BPS state counting. Despite the wall-crossing phenomenon of those countings, an invariant quantity of quiver itself, dubbed quiver invariant, will be carefully defined for a certain class of abelian quiver theories. After that, to get a handle on nonabelian theories, I will overview the abelianisation and the mutation methods, and will illustrate some of their interesting features through a couple of simple examples.

Fri, 12 Jun 2015

12:30 - 14:00
L6

tbc

Michael Monoyios
Fri, 12 Jun 2015

10:00 - 11:00
L5

A recommendation system for journey planning

Darren Price
(Thales)
Abstract

A recommendation system for multi-modal journey planning could be useful to travellers in making their journeys more efficient and pleasant, and to transport operators in encouraging travellers to make more effective use of infrastructure capacity.

Journeys will have multiple quantifiable attributes (e.g. time, cost, likelihood of getting a seat) and other attributes that we might infer indirectly (e.g. a pleasant view).  Individual travellers will have different preferences that will affect the most appropriate recommendations.  The recommendation system might build profiles for travellers, quantifying their preferences.  These could be inferred indirectly, based on the information they provide, choices they make and feedback they give.  These profiles might then be used to compare and rank different travel options.

Thu, 11 Jun 2015

17:30 - 18:30
L6

Examples of quasiminimal classes

Jonathan Kirby
(UEA)
Abstract

I will explain the framework of quasiminimal structures and quasiminimal classes, and give some basic examples and open questions. Then I will explain some joint work with Martin Bays in which we have constructed variants of the pseudo-exponential fields (originally due to Boris Zilber) which are quasimininal and discuss progress towards the problem of showing that complex exponentiation is quasiminimal. I will also discuss some joint work with Adam Harris in which we try to build a pseudo-j-function.

Thu, 11 Jun 2015

16:00 - 17:00
C2

What is bubbling?

Roland Grinis
(Oxford)
Abstract

I plan to discuss finite time singularities for the harmonic map heat flow and describe a beautiful example of winding behaviour due to Peter Topping.

Thu, 11 Jun 2015

16:00 - 17:00
L6

Moduli stacks of potentially Barsotti-Tate Galois representations

Toby Gee
(Imperial College)
Abstract

I will discuss joint work with Ana Caraiani, Matthew Emerton and David Savitt, in which we construct moduli stacks of two-dimensional potentially Barsotti-Tate Galois representations, and study the relationship of their geometry to the weight part of Serre's conjecture.

Thu, 11 Jun 2015

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Interior Point Methods for Optimal Power Flow Formulations

Andreas Grothey
(University of Edinburgh)
Abstract

Security Constrained Optimal Power Flow is an increasingly important problem for power systems operation both in its own right and as a subproblem for more complex problems such as transmission switching or
unit commitment.

The structure of the problem resembles stochastic programming problems in that one aims to find a cost optimal operation schedule that is feasible for all possible equipment outage scenarios
(contingencies). Due to the presence of power flow constraints (in their "DC" or "AC" version), the resulting problem is a large scale linear or nonlinear programming problem.

However it is known that only a small subset of the contingencies is active at the solution. We show how Interior Point methods can exploit this structure both by simplifying the linear algebra operations as
well as generating necessary contingencies on the fly and integrating them into the algorithm using IPM warmstarting techniques. The final problem solved by this scheme is significantly smaller than the full
contingency constrained problem, resulting in substantial speed gains.

Numerical and theoretical results of our algorithm will be presented.

Thu, 11 Jun 2015

12:00 - 13:00
L6

On geometry of stationary solutions of Euler equations

Nikolai Nadirashvili
(CNRS)
Abstract
We discuss some qualitative results on geometry of streamlines and a global structure of stationary solutions of the Euler equations of the ideal fluid.
Wed, 10 Jun 2015

16:00 - 17:00
C1

Unital associahedra

Nina Otter
(Oxford)
Abstract

Associahedra are polytopes introduced by Stasheff to encode topological semigroups in which associativity holds up to coherent homotopy. These polytopes naturally form a topological operad that gives a resolution of the associative operad. Muro and Tonks recently introduced an operad which encodes $A_\infty$ algebras with homotopy coherent unit. 
The material in this talk will be fairly basic. I will cover operads and their algebras, give the construction of the $A_\infty$ operad using the Boardman-Vogt resolution, and of the unital associahedra introduced by Muro and Tonks.
Depending on time and interest of the audience I will define unital $A_\infty$ differential graded algebras and explain how they are precisely the algebras over the cellular chains of the operad constructed by Muro and Tonks.

Wed, 10 Jun 2015

11:30 - 13:00
L1

Materiality of Colour: from Neolithic Earth Colours to Contemporary Interference Pigments

Antoni Malinowski
(Mathematical Institute Commissioned Artist)
Abstract

Artist Antoni Malinowski has been commissioned to produce a major wall painting in the foyer of the new Mathematical Institute in Oxford, the Andrew Wiles Building. To celebrate and introduce that work Antoni and a series of distinguished speakers will demonstrate the different impacts and perceptions of colour produced by the micro-structure of the pigments, from an explanation of the pigments themselves to an examination of how the brain perceives colour.

Speakers:

Jo Volley, Gary Woodley and Malina Busch, the Pigment Timeline Project, Slade School of Fine Art, University College London

‘Pigment Timeline’

Dr. Ruth Siddall - Senior Lecturer in Earth Sciences, University College London

‘Pigments: microstructure and origins?’  

Antoni Malinowski

‘Spectrum Materialised’ 

Prof. Hannah Smithson Associate Professor, Experimental Psychology, University of Oxford and Tutorial Fellow, Pembroke College

‘Colour Perception‘

11.30am, Lecture Theatre 1

Mathematical Institute, University of Oxford

Andrew Wiles Building

Radcliffe Observatory Quarter

No booking required

 

Wed, 10 Jun 2015

11:00 - 12:30
N3.12

The arithmetic of K3 surfaces.

Chris Nicholls
(Oxford)
Abstract

In the classification of surfaces, K3 surfaces hold a place not dissimilar to that of elliptic curves within the classification of curves by genus. In recent years there has been a lot of activity on the problem of rational points on K3 surfaces. I will discuss the problem of finding the Picard group of a K3 surface, and how this relates to finding counterexamples to the Hasse principle on K3 surfaces.

Tue, 09 Jun 2015

17:00 - 18:00
C2

TBA

Benjamin Klopsch
(Duesseldorf)
Tue, 09 Jun 2015
15:15
L4

(COW seminar) The derived category of moduli spaces of vector bundles on curves

M S Narasimhan
(TIFR Bangalore)
Abstract

Let X be a smooth projective curve (of genus greater than or equal to 2) over C and M the moduli space of vector bundles over X, of rank 2 and with fixed determinant of degree 1.Then the Fourier-Mukai functor from the bounded derived category of coherent sheaves on X to that of M, given by the normalised Poincare bundle, is fully faithful, except (possibly) for hyperelliptic curves of genus 3,4,and 5

 This result is proved by establishing precise vanishing theorems for a family of vector bundles on the moduli space M.

 Results on the deformation  and inversion of Picard bundles (already known) follow from the full faithfulness of the F-M functor

Tue, 09 Jun 2015

14:30 - 15:00
L5

Krylov methods for operators

Jared Aurentz
(University of Oxford)
Abstract
In this talk we will explore the convergence of Krylov methods when used to solve $Lu = f$ where $L$ is an unbounded linear operator.  We will show that for certain problems, methods like Conjugate Gradients and GMRES still converge even though the spectrum of $L$ is unbounded. A theoretical justification for this behavior is given in terms of polynomial approximation on unbounded domains.    
Tue, 09 Jun 2015
14:30
L6

Embedding the Binomial Hypergraph into the Random Regular Hypergraph

Matas Šileikis
(Oxford University)
Abstract

Let $G(n,d)$ be a random $d$-regular graph on $n$ vertices. In 2004 Kim and Vu showed that if $d$ grows faster than $\log n$ as $n$ tends to infinity, then one can define a joint distribution of $G(n,d)$ and two binomial random graphs $G(n,p_1)$ and $G(n,p_2)$ -- both of which have asymptotic expected degree $d$ -- such that with high probability $G(n,d)$ is a supergraph of $G(n,p_1)$ and a subgraph of $G(n,p_2)$. The motivation for such a coupling is to deduce monotone properties (like Hamiltonicity) of $G(n,d)$ from the simpler model $G(n,p)$. We present our work with A. Dudek, A. Frieze and A. Rucinski on the Kim-Vu conjecture and its hypergraph counterpart.

Tue, 09 Jun 2015

14:00 - 14:30
L5

Sparse matrix orderings: it's child's play! Or is it?

Sue Thorne
(STFC Rutherford Appleton Laboratory)
Abstract

Sparse matrices occur in numerical simulations throughout science and engineering. In particular, it is often desirable to solve systems of the form Ax=b, where A is a sparse matrix with 100,000+ rows and columns. The order that the rows and columns occur in can have a dramatic effect on the viability of a direct solver e.g., the time taken to find x, the amount of memory needed, the quality of x,... We shall consider symmetric matrices and, with the help of playdough, explore how best to order the rows/columns using a nested dissection strategy. Starting with a straightforward strategy, we will discover the pitfalls and develop an adaptive strategy with the aim of coping with a large variety of sparse matrix structures.

Some of the talk will involve the audience playing with playdough, so bring your inner child along with you!

Tue, 09 Jun 2015

13:30 - 14:30
L4

(COW SEMINAR) Uniformizing the moduli space of abelian 6-folds

Valeri Alexeev
(University of Georgia)
Abstract

By classical results of Mumford and Donagi, Mori-Mukai, Verra, the moduli spaces A_g of principally polarized abelian varieties of dimension g are unirational for g≤5 and are of general type for g≥7. Answering a conjecture of Kanev, we provide a uniformization of A6 by a Hurwitz space parameterizing certain curve covers. Using this uniformization, we study the geometry of A6 and make advances towards determining its birational type. This is a joint work with Donagi-Farkas-Izadi-Ortega.

Tue, 09 Jun 2015

12:30 - 13:30
Oxford-Man Institute

Markets are Efficient if and only if P=NP

Philip Maymin
(NYU)
Abstract

I prove that if markets are weak-form efficient, meaning current prices fully reflect all information available in past prices, then P = NP, meaning every computational problem whose solution can be verified in polynomial time can also be solved in polynomial time. I also prove the converse by showing how we can "program" the market to solveNP-complete problems. Since P probably does not equal NP, markets are probably not efficient. Specifically, markets become increasingly inefficient as the time series lengthens or becomes more frequent. An illustration by way of partitioning the excess returns to momentum strategies based on data availability confirms this prediction.

For more info please visit: http://philipmaymin.com/academic-papers#pnp