Thu, 12 Feb 2015

16:00 - 17:00
L5

Rational points on Kummer varieties

René Pannekoek
(Imperial College London)
Abstract

Given an abelian variety A over a number field k, its Kummer variety X is the quotient of A by the automorphism that sends each point P to -P. We study p-adic density and weak approximation on X by relating its rational points to rational points of quadratic twists of A. This leads to many examples of K3 surfaces over Q whose rational points lie dense in the p-adic topology, or in product topologies arising from p-adic topologies. Finally, the same method is used to prove that if the Brauer--Manin obstruction controls the failure of weak approximation on all Kummer varieties, then ranks of quadratic twists of (non-trivial) abelian varieties are unbounded. This last fact arises from joint work with David Holmes.

Thu, 12 Feb 2015
16:00
L4

Discrete time approximation of HJB equations via BSDEs with nonpositive jumps

Idris Kharroubi
(Université Paris Dauphine)
Abstract
We propose a new probabilistic numerical scheme for fully nonlinear equations of Hamilton-Jacobi-Bellman (HJB) type associated to stochastic control problems, which is based on the a recent Feynman-Kac representation by means of control randomization and backward stochastic differential equation with nonpositive jumps. We study a discrete time approximation for the minimal solution to this class of BSDE when the time step goes to zero, which provides both an approximation for the value function and for an optimal control in feedback form. We obtained a convergence rate without any ellipticity condition on the controlled diffusion coefficient.
Thu, 12 Feb 2015

16:00 - 17:00
L3

Convection of a reactive solute in a porous medium

Oliver Jensen
(Manchester)
Abstract

Abstract: Motivated loosely by the problem of carbon sequestration in underground aquifers, I will describe computations and analysis of one-sided two-dimensional convection of a solute in a fluid-saturated porous medium, focusing on the case in which the solute decays via a chemical reaction.   Scaling properties of the flow at high Rayleigh number are established and rationalized through an asymptotic model, that addresses the transient stability of a near-surface boundary layer and the structure of slender plumes that form beneath.  The boundary layer is shown to restrict the rate of solute transport to deep domains.  Knowledge of the plume structure enables slow erosion of the substrate of the reaction to be described in terms of a simplified free boundary problem.

Co-authors: KA Cliffe, H Power, DS Riley, TJ Ward

 

Thu, 12 Feb 2015

14:00 - 15:00
L5

The evolution of the universe recreated in a supercomputer

Professor Christian Klingenberg
(University of Wuerzburg)
Abstract

In this talk we will describe the steps towards self-consistent computer simulations of the evolution of the universe beginning soon after the Big Bang and ending with the formation of realistic stellar systems like the Milky Way. This is a multi-scale problem of vast proportions. The first step has been the Millennium Simulation, one of the largest and most successful numerical simulations of the Universe ever carried out. Now we are in the midst of the next step, where this is carried to a much higher level of physical fidelity on the latest supercomputing platforms. This talk will be illustrate how the role of mathematics is essential in this endeavor. Also computer simulations will be shown. This is joint work among others with Volker Springel.

 

Thu, 12 Feb 2015

12:00 - 13:00
L6

Twinning in Strained Ferroelastics: Microstructure and Statistics

Xiangdong Ding
(xi'an Jiatong University)
Abstract

The generation of functional interfaces such as superconducting and ferroelectric twin boundaries requires new ways to nucleate as many interfaces as possible in bulk materials and thin films. Materials with high densities of twin boundaries are often ferroelastics and martensites. Here we show that the nucleation and propagation of twin boundaries depend sensitively on temperature and system size. The geometrical mechanisms for the evolution of the ferroelastic microstructure under strain deformation remain similar in all thermal regimes, whereas their thermodynamic behavior differs dramatically: on heating, from power-law statistics via the Kohlrausch law to a Vogel-Fulcher law.We find that the complexity of the pattern can be well characterized by the number of junctions between twin boundaries. Materials with soft bulk moduli have much higher junction densities than those with hard bulk moduli. Soft materials also show an increase in the junction density with diminishing sample size. The change of the complexity and the number density of twin boundaries represents an important step forward in the development of ‘domain boundary engineering’, where the functionality of the materials is directly linked to the domain pattern.

Thu, 12 Feb 2015
11:00
C5

Matrix multiplication is determined by orthogonality and trace.

Chris Heunen
(Oxford)
Abstract

Everything measurable about a quantum system, as modelled by a noncommutative operator algebra, is captured by its commutative subalgebras. We briefly survey this programme, and zoom in one specific incarnation: any bilinear associative function on the set of n-by-n matrices over a field of characteristic not two, that makes the same vectors orthogonal as ordinary matrix multiplication and gives the same trace as ordinary matrix multiplication, must in fact be ordinary matrix multiplication (or its opposite). Model-theoretic questions about the hypotheses and scope of this theorem are raised.

Wed, 11 Feb 2015

16:00 - 17:00
C1

Subgroups of Aut($F_n$) and actions on CAT(0) spaces

Robert Kropholler
(Oxford)
Abstract

I will look at some decidability questions for subgroups of Aut($F_n$) for general $n$. I will then discuss semisimple actions of Aut($F_n$) on complete CAT(0) spaces proving that the Nielsen moves will act elliptically. I will also look at proving Aut($F_3$) is large and if time permits discuss the fact that Aut($F_n$) is not Kähler

Wed, 11 Feb 2015

11:00 - 12:30
N3.12

The Poincaré conjecture in dimensions 3 and 4.

Alejandro Betancourt
(Oxford)
Abstract

In this talk we will review some of the main ideas around Hamilton's program for the Ricci flow and see how they fit together to provide a proof of the Poincaré conjecture in dimension 3. We will then analyse this tools in the context of 4-manifolds.

Tue, 10 Feb 2015

17:00 - 18:00
C2

Spin projective representations of Weyl groups, Green polynomials, and nilpotent orbits

Dan Ciubotaru
(Oxford)
Abstract

The classification of irreducible representations of pin double covers of Weyl groups was initiated by Schur (1911) for the symmetric group and was completed for the other groups by A. Morris, Read and others about 40 years ago. Recently, a new relation between these projective representations, graded Springer representations, and the geometry of the nilpotent cone has emerged. I will explain these connections and the relation with a Dirac operator for (extended) graded affine Hecke algebras.  The talk is partly based on joint work with Xuhua He.

Tue, 10 Feb 2015
14:30
L6

Points in almost general position

Luka Milicevic
(Cambridge University)
Abstract

Erdős asked the following question: given a positive integer $n$, what is the largest integer $k$ such that any set of $n$ points in a plane, with no $4$ on a line, contains $k$ points no $3$ of which are collinear? Füredi proved that $k = o(n)$. Cardinal, Toth and Wood extended this result to $\mathbb{R}^3$, finding sets of $n$ points with no $5$ on a plane whose subsets with no $4$ points on a plane have size $o(n)$, and asked the question for the higher dimensions. For given $n$, let $k$ be largest integer such that any set of $n$ points in $\mathbb{R}^d$ with no more than $d + 1$ cohyperplanar points, has $k$ points with no $d + 1$ on a hyperplane. Is $k = o(n)$? We prove that $k = o(n)$ for any fixed $d \geq 3$.

Tue, 10 Feb 2015

14:30 - 15:00
L5

Expander parallel $\ell_0$ decoding

Rodrigo Mendoza-Smith
(University of Oxford)
Abstract

We present an algorithm, Parallel-$\ell_0$, for {\em combinatorial compressed sensing} (CCS), where the sensing matrix $A \in \mathbb{R}^{m\times n}$ is the adjacency matrix of an expander graph. The information preserving nature of expander graphs allow the proposed algorithm to provably recover a $k$-sparse vector $x\in\mathbb{R}^n$ from $m = \mathcal{O}(k \log (n/k))$ measurements $y = Ax$ via $\mathcal{O}(\log k)$ simple and parallelizable iterations when the non-zeros in the support of the signal form a dissociated set, meaning that all of the $2^k$ subset sums of the support of $x$ are pairwise different. In addition to the low computational cost, Parallel-$\ell_0$ is observed to be able to recover vectors with $k$ substantially larger than previous CCS algorithms, and even higher than $\ell_1$-regularization when the number of measurements is significantly smaller than the vector length.

Tue, 10 Feb 2015

14:00 - 14:30
L5

Choking of flow through a poroelastic material

Ian Sobey
(University of Oxford)
Abstract

Flow thought a porous media is usually described by assuming the superficial velocity can be expressed in terms of a constant permeability and a pressure gradient. In poroelastic flows the underlying elastic matrix responds to changes in the fluid pressure. When the elastic deformation is allowed to influence the permeability through the elastic strain, it becomes possible for increased fluid pressure gradient not to result in increased flow, but to decrease the permeability and potentially this may close off or choke the flow. I will talk about a simple model problem for a number of different elastic constitutive models and a number of different permeability-strain models and examine whether there is a general criterion that can be derived to show when, or indeed if, choking can occur for different elasticity-permeability combinations.

Tue, 10 Feb 2015

12:00 - 13:00
L5

The Geometry of Renormalization on Scalar Field Theories.

Susama Agarwala
(Oxford)
Abstract
In this talk, I develop the Hopf algebra of renormalization, as established by Connes and Kreimer. I then use the correspondence between commutative Hopf algebras and affine groups to show that the energy scale dependence of the renormalized theory can be expressed as a Maurer Cartan connection on the renormalization group.

Tue, 10 Feb 2015

11:00 - 13:00
C1

Some analytic problems on liquid crystals (part 2)

Min-Chun Hong
(The University of Queensland)
Abstract

1)      The Hardt-Lin's problem and a new approximation of a relaxed energy for harmonic maps.

We introduce a new approximation for  the relaxed energy $F$ of the Dirichlet energy and prove that the minimizers of the approximating functional converge to a minimizer $u$ of the relaxed energy for harmonic maps, and that $u$ is  partially regular without using the concept of Cartesian currents.

2)  Partial regularity in liquid crystals  for  the Oseen-Frank model:  a new proof of the result of Hardt, Kinderlehrer and Lin.

Hardt, Kinderlehrer and Lin (\cite {HKL1}, \cite {HKL2}) proved that a minimizer $u$ is smooth on some open subset
$\Omega_0\subset\Omega$ and moreover $\mathcal H^{\b} (\Omega\backslash \Omega_0)=0$ for some positive $\b <1$, where
$\mathcal H^{\b}$ is the Hausdorff measure.   We will present a new proof of Hardt, Kinderlehrer and Lin.

 3)      Global existence of solutions of the Ericksen-Leslie system for  the Oseen-Frank model.

The dynamic flow of liquid crystals is described by the Ericksen-Leslie system. The Ericksen-Leslie system is a system of  the Navier-Stokes equations coupled with the gradient flow for the Oseen-Frank model,   which generalizes the heat flow for harmonic maps  into the $2$-sphere.   In this talk, we will outline a proof of global existence of solutions of the Ericksen-Leslie system for a general Oseen-Frank  model in 2D.

Mon, 09 Feb 2015

17:00 - 18:00
L4

Global existence of solutions of the Ericksen-Leslie system for the Oseen-Frank model

Min-Chun Hong
(The University of Queensland)
Abstract

The dynamic flow of liquid crystals is described by the Ericksen-Leslie system. The Ericksen-Leslie system is a system of  the Navier-Stokes equations coupled with the gradient flow for the Oseen-Frank model,   which generalizes the heat flow for harmonic maps  into the $2$-sphere.   In this talk, we will outline a proof of global existence of solutions of the Ericksen-Leslie system for a general Oseen-Frank  model in 2D.

Mon, 09 Feb 2015
15:45
C6

The symmetries of the free factor complex

Martin Bridson
(Oxford)
Abstract

I shall discuss joint work with Mladen Bestvina in which we prove that the group of simplicial automorphisms of the complex of free factors for a
free group $F$ is exactly $Aut(F)$, provided that $F$ has rank at least $3$. I shall begin by sketching the fruitful analogy between automorphism groups of free groups, mapping class groups, and arithmetic lattices, particularly $SL_n({\mathbb{Z}})$. In this analogy, the free factor complex, introduced by Hatcher and Vogtmann, appears as the natural analogue in the $Aut(F)$ setting of the spherical Tits building associated to $SL_n $ and of the curve complex associated to a mapping class group. If $n>2$, Tits' generalisation of the Fundamental Theorem of Projective Geometry (FTPG) assures us that the automorphism group of the building is $PGL_n({\mathbb{Q}})$. Ivanov proved an analogous theorem for the curve complex, and our theorem complements this. These theorems allow one to identify the abstract commensurators of $GL_n({\mathbb{Z}})$, mapping class groups, and $Out(F)$, as I shall explain.

Mon, 09 Feb 2015

15:45 - 16:45
Oxford-Man Institute

tba

tba
Abstract

tba

Mon, 09 Feb 2015

14:15 - 15:15
Oxford-Man Institute

The Renormalization Group as a tool of Rigorous Probability Theory

Ajay Chandra
(Warwick University)
Abstract

The Renormalization Group (RG) was pioneered by the physicist Kenneth Wilson in the early 70's and since then it has become a fundamental tool in physics. RG remains the most general philosophy for understanding how many models in statistical mechanics behave near their critical point but implementing RG analysis in a mathematically rigorous way remains quite challenging.

I will describe how analysis of RG flows translate into statements about continuum limits, universality, and cross-over phenomena - as a concrete example I will speak about some joint work with Abdelmalek Abdesselam and Gianluca Guadagni.

Mon, 09 Feb 2015
14:15
L5

Automorphism and isometry groups of Higgs bundle moduli spaces

David Baraglia
(Adelaide)
Abstract

The moduli space of Higgs bundles on a hyperbolic Riemann surface is a complex analytic variety which has a hyperkahler metric on its smooth locus. As such it has several associated symmetry groups including the group of complex analytic automorphisms and the group of isometries. I will discuss the classification of these and some other related groups.

Mon, 09 Feb 2015

12:00 - 13:00
L5

Generalised geometry for supergravity and flux vacua

Charles Strickland-Constable
(CEA/Saclay)
Abstract

Motivated by the study of supersymmetric backgrounds with non-trivial fluxes, we provide a formulation of supergravity in the language of generalised geometry, as first introduced by Hitchin, and its extensions. This description both dramatically simplifies the equations of the theory by making the hidden symmetries manifest, and writes the bosonic sector geometrically as a direct analogue of Einstein gravity. Further, a natural analogue of special holonomy manifolds emerges and coincides with the conditions for supersymmetric backgrounds with flux, thus formulating these systems as integrable geometric structures.