Thu, 26 Feb 2015

16:00 - 17:00
L5

Restriction of Banach representations of GL_2(Q_p) to GL_2(Z_p)

Gabriel Dospinescu
(ENS Lyon)
Abstract

Thanks to the p-adic local Langlands correspondence for GL_2(Q_p), one "knows" all admissible unitary topologically irreducible representations of GL_2(Z_p). In this talk I will focus on some elementary properties of their restriction to GL_2(Z_p): for instance, to what extent does the restriction to GL_2(Z_p) allow one to recover the original representation, when is the restriction of finite length, etc.

Thu, 26 Feb 2015

14:00 - 15:00
L5

Quasi-optimal stability estimates for the hp-Raviart-Thomas projection operator on the cube

Dr Alexey Chernov
(Reading University)
Abstract

Stability of the hp-Raviart-Thomas projection operator as a mapping H^1(K) -> H^1(K) on the unit cube K in R^3 has been addressed e.g. in [2], see also [1]. These results are suboptimal with respect to the polynomial degree. In this talk we present quasi-optimal stability estimates for the hp-Raviart-Thomas projection operator on the cube. The analysis involves elements of the polynomial approximation theory on an interval and the real method of Banach space interpolation.

(Joint work with Herbert Egger, TU Darmstadt)

[1] Mark Ainsworth and Katia Pinchedez. hp-approximation theory for BDFM and RT finite elements on quadrilaterals. SIAM J. Numer. Anal., 40(6):2047–2068 (electronic) (2003), 2002.

[2] Dominik Schötzau, Christoph Schwab, and Andrea Toselli. Mixed hp-DGFEM for incompressible flows. SIAM J. Numer. Anal., 40(6):2171–2194 (electronic) (2003), 2002.

Thu, 26 Feb 2015

12:00 - 13:00
L6

Stability in exponential time of Minkowski Space-time with a translation space-like Killing field

Cecile Huneau
(Ecole Normale Superieure)
Abstract
In the presence of a translation space-like Killing field

the 3 + 1 vacuum Einstein equations reduce to the 2 + 1

Einstein equations with a scalar field. We work in

generalised wave coordinates. In this gauge Einstein

equations can be written as a system of quaslinear

quadratic wave equations. The main difficulty is due to

the weak decay of free solutions to the wave equation in 2

dimensions. To prove long time existence of solutions, we

have to rely on the particular structure of Einstein

equations in wave coordinates. We also have to carefully

choose the behaviour of our metric in the exterior region

to enforce convergence to Minkowski space-time at

time-like infinity.
Wed, 25 Feb 2015

16:00 - 17:00
C1

3-manifolds and Kähler groups

Claudio Llosa Isenrich
(Oxford)
Abstract

A Kähler group is a group which is isomorphic to the fundamental group of a compact Kähler manifold. In 2008 Dimca and Suciu proved that the groups which are both Kähler and isomorphic to the fundamental group of a closed 3-manifold are precisely the finite subgroups of $O(4)$ which act freely on $S^3$. In this talk we will explain Kotschick's proof of this result. On the 3-manifold side the main tools that will be used are the first Betti number and Poincare Duality and on the Kähler group side we will make use of the Albanese map and some basic results about Kähler groups. All relevant notions will be explained in the talk.

Wed, 25 Feb 2015

11:00 - 12:30

Derived Categories of Sheaves on Smooth Projective Varieties in S2.37

Jack Kelly
(Oxford)
Abstract

In this talk we will introduce the (bounded) derived category of coherent sheaves on a smooth projective variety X, and explain how the geometry of X endows this category with a very rigid structure. In particular we will give an overview of a theorem of Orlov which states that any sufficiently ‘nice’ functor between such categories must be Fourier-Mukai.

Tue, 24 Feb 2015

15:45 - 16:45
L4

The exponential map based at a singularity

Daniel Grieser
(Oldenberg)
Abstract
We study isolated singularities of a space embedded in a smooth Riemannian manifold from a differential geometric point of view. While there is a considerable literature on bi-lipschitz invariants of singularities, we obtain a more precise (complete asymptotic) understanding of the metric properties of certain types of singularities. This involves the study of the family of geodesics emanating from the singular point. While for conical singularities this family of geodesics, and the exponential map defined by them, behaves much like in the smooth case, the situation is very different in the case of cuspidal singularities, where the exponential map may fail to be locally injective. We also study a mixed conical-cuspidal case. Our methods involve the description of the geodesic flow as a Hamiltonian system and its resolution by blow-ups in phase space. 
 
This is joint work with Vincent Grandjean.
Tue, 24 Feb 2015
14:30
L6

Optimal Resistor Networks

Mark Walters
(Queen Mary University)
Abstract

Suppose we have a finite graph. We can view this as a resistor network where each edge has unit resistance. We can then calculate the resistance between any two vertices and ask questions like `which graph with $n$ vertices and $m$ edges minimises the average resistance between pairs of vertices?' There is a `obvious' solution; we show that this answer is not correct.

This problem was motivated by some questions about the design of statistical experiments (and has some surprising applications in chemistry) but this talk will not assume any statistical knowledge.

This is joint work with Robert Johnson.

Tue, 24 Feb 2015

14:30 - 15:00
L5

A Cell Based Particle Method for Modelling Dynamic Interfaces

Sean Hon
(University of Oxford)
Abstract
We propose several modifications to the grid based particle method (GBPM) for moving interface modelling. There are several nice features of the proposed algorithm. The new method can significantly improve the distribution of sampling particles on the evolving interface. Unlike the original GBPM where footpoints (sampling points) tend to cluster to each other, the sampling points in the new method tend to be better separated on the interface. Moreover, by replacing the grid-based discretisation using the cell-based discretisation, we naturally decompose the interface into segments so that we can easily approximate surface integrals. As a possible alternative to the local polynomial least square approximation, we also study a geometric basis for local reconstruction in the resampling step. We will show that such modification can simplify the overall implementations. Numerical examples in two- and three-dimensions will show that the algorithm is computationally efficient and accurate.
Tue, 24 Feb 2015

14:00 - 14:30
L5

A hybrid numerical-asymptotic boundary element method for scattering by penetrable obstacles

Samuel Groth
(University of Reading)
Abstract

When high-frequency acoustic or electromagnetic waves are incident upon an obstacle, the resulting scattered field is composed of rapidly oscillating waves. Conventional numerical methods for such problems use piecewise-polynomial approximation spaces which are not well-suited to capture the oscillatory solution. Hence these methods are prohibitively expensive in the high-frequency regime. Much work has been done in developing “hybrid numerical-asymptotic” (HNA) boundary element methods which utilise approximation spaces containing oscillatory functions carefully chosen to capture the high-frequency asymptotic behaviour of the solution. The computational cost of this approach is significantly smaller than that of conventional methods, and for many problems it is independent of the frequency. In this talk, I will outline the HNA method and discuss its extension to scattering by penetrable obstacles.​

Tue, 24 Feb 2015
12:30
Oxford-Man Institute

Measuring and predicting human behaviour using online data

Tobias Preis
(University of Warwick)
Abstract

In this talk, I will outline some recent highlights of our research, addressing two questions. Firstly, can big data resources provide insights into crises in financial markets? By analysing Google query volumes for search terms related to finance and views of Wikipedia articles, we find patterns which may be interpreted as early warning signs of stock market moves. Secondly, can we provide insight into international differences in economic wellbeing by comparing patterns of interaction with the Internet? To answer this question, we introduce a future-orientation index to quantify the degree to which Internet users seek more information about years in the future than years in the past. We analyse Google logs and find a striking correlation between the country's GDP and the predisposition of its inhabitants to look forward. Our results illustrate the potential that combining extensive behavioural data sets offers for a better understanding of large scale human economic behaviour.

Tue, 24 Feb 2015

12:00 - 13:00
L5

Curved-space supersymmetry and Omega-background for 2d N=(2,2) theories, localization and vortices.

Cyril Closset
(Stonybrook)
Abstract

I will present a systematic approach to two-dimensional N=(2,2) supersymmetric gauge theories in curved space, with a particular focus on the two-dimensional Omega deformation. I will explain how to compute Omega-deformed A-type topological correlation functions in purely field theoretic terms (i.e. without relying on a target-space picture), improving on previous techniques. The resulting general formula simplifies previous results in the Abelian (toric) case, while it leads to new results for non-Abelian GLSMs.

Tue, 24 Feb 2015

11:00 - 12:30
C5

Embedology for Control and Random Dynamical Systems in Reproducing Kernel Hilbert Spaces

Visiting Professor Boumediene Hamzi
(Koç University Istanbul)
Abstract

Abstract: We introduce a data-based approach to estimating key quantities which arise in the study of nonlinear control and random dynamical systems. Our approach hinges on the observation that much of the existing linear theory may be readily extended to nonlinear systems -with a reasonable expectation of success - once the nonlinear system has been mapped into a high or infinite dimensional Reproducing Kernel Hilbert Space. In particular, we develop computable, non-parametric estimators approximating controllability and observability energy/Lyapunov functions for nonlinear systems, and study the ellipsoids they induce. It is then shown that the controllability energy estimator provides a key means for approximating the invariant measure of an ergodic, stochastically forced nonlinear system. We also apply this approach to the problem of model reduction of nonlinear control systems.

In all cases the relevant quantities are estimated from simulated or observed data. These results collectively argue that there is a reasonable passage from linear dynamical systems theory to a data-based nonlinear dynamical systems theory through reproducing kernel Hilbert spaces. This is a joint work with J. Bouvrie (MIT).

Mon, 23 Feb 2015

17:00 - 18:00
L4

A prirori estimates for the relativistic free boundary Euler equations in physical vacuum

Mahir Hadzic
(King's College London)
Abstract
We consider Euler equations on a fixed Lorentzian manifold. The fluid is initially supported on a compact domain and the boundary between the fluid and the vacuum is allowed to move. Imposing the so-called physical vacuum boundary condition, we will explain how to obtain a priori estimates for this problem. In particular, our functional framework allows us to track the regularity of the free boundary. This is joint work with S. Shkoller and J. Speck.
Mon, 23 Feb 2015

16:00 - 17:00
C2

A multiplicative analogue of Schnirelmann's Theorem

Aled Walker
(Oxford)
Abstract

In 1937 Vinogradov showed that every sufficiently large odd number is the sum of three primes, using bounds on the sums of additive characters taken over the primes. He was improving, rather dramatically, on an earlier result of Schnirelmann, which showed that every sufficiently large integer is the sum of at most 37 000 primes. We discuss a natural analogue of this question in the multiplicative group (Z/pZ)* and find that, although the current unconditional character sum technology is too weak to use Vinogradov's approach, an idea from Schnirelmann's work still proves fruitful. We will use a result of Selberg-Delange, an application of a small sieve, and a few easy ideas from additive combinatorics. 

Mon, 23 Feb 2015
15:45
L6

Affine Deligne-Lusztig varieties and the geometry of Euclidean reflection groups

Anne Thomas
(Glasgow)
Abstract

Let $G$ be a reductive group such as $SL_n$ over the field $k((t))$, where $k$ is an algebraic closure of a finite field, and let $W$ be the affine Weyl group of $G$.  The associated affine Deligne-Lusztig varieties $X_x(b)$ were introduced by Rapoport.  These are indexed by elements $x$ in $G$ and $b$ in $W$, and are related to many important concepts in algebraic geometry over fields of positive characteristic.  Basic questions about the varieties $X_x(b)$ which have remained largely open include when they are nonempty, and if nonempty, their dimension.  We use techniques inspired by geometric group theory and representation theory to address these questions in the case that $b$ is a translation.  Our approach is constructive and type-free, sheds new light on the reasons for existing results and conjectures, and reveals new patterns.  Since we work only in the standard apartment of the building for $G$, which is just the tessellation of Euclidean space induced by the action of the reflection group $W$, our results also hold over the p-adics.  This is joint work with Elizabeth Milicevic (Haverford) and Petra Schwer (Karlsruhe).

Mon, 23 Feb 2015
14:15
L5

Folded hyperkähler manifolds

Nigel Hitchin
(Oxford)
Abstract

The lecture will introduce the notion of a folded 4-dimensional hyperkähler manifold, give examples and prove a local existence theorem from boundary data using twistor methods, following an idea of Biquard.  

Mon, 23 Feb 2015

12:00 - 13:00
Fisher Room

Wall-crossing, easy and smooth

Boris Pioline
(Pierre and Marie Curie University)
Abstract
The spectrum of BPS states in four-dimensional gauge theories and string vacua with N=2 supersymmetry is well-known to be jump across certain walls in moduli space, where bound states can decay. In this talk I will survey how the discontinuity can be understood in terms of the supersymmetric quantum mechanics of mutually non-local point particles. This physical picture 
suggests that, at any point in moduli space, the BPS spectrum can be viewed as a sum of bound states of absolutely stable `single-centered' constituents. This idea appears to be vindicated in the context of quiver moduli spaces. Finally, I shall explain how the discontinuous BPS indices can be combined into a `new' supersymmetric index, a function which sums up multi-particle state contributions and is continuous across the wall.
Thu, 19 Feb 2015

17:30 - 18:30
L6

Hardy type derivations on the surreal numbers

Alessandro Berarducci
(Universita di Pisa)
Abstract

The field of transseries was introduced by Ecalle to give a solution to Dulac's problem, a weakening of Hilbert's 16th problem. They form an elementary extension of the real exponential field and have received the attention of model theorists. Another such elementary extension is given by Conway's surreal numbers, and various connections with the transseries have been conjectured, among which the possibility of introducing a Hardy type derivation on the surreal numbers. I will present a complete solution to these conjectures obtained in collaboration with Vincenzo Mantova.
 

Thu, 19 Feb 2015

16:00 - 17:00
L5

Polynomial values modulo primes on average, and the large(r) sieve

Fernando Shao
(Oxford)
Abstract

In sieve theory, one is concerned with estimating the size of a sifted set, which avoids certain residue classes modulo many primes. For example, the problem of counting primes corresponds to the situation when the residue class 0 is removed for each prime in a suitable range. This talk will be concerned about what happens when a positive proportion of residue classes is removed for each prime, and especially when this proporition is more than a half. In doing so we will come across an algebraic question: given a polynomial f(x) in Z[x], what is the average size of the value set of f reduced modulo primes?

Thu, 19 Feb 2015
16:00
L1

Optimal casino betting: why lucky coins and good memory are important

Sang Hu
(National University of Singapore)
Abstract

We consider the dynamic casino gambling model initially proposed by Barberis (2012) and study the optimal stopping strategy of a pre-committing gambler with cumulative prospect theory (CPT) preferences. We illustrate how the strategies computed in Barberis (2012) can be strictly improved by reviewing the entire betting history or by tossing random coins, and explain that such improvement is possible because CPT preferences are not quasi-convex. Finally, we develop a systematic and analytical approach to finding the optimal strategy of the gambler. This is a joint work with Prof. Xue Dong He (Columbia University), Prof. Jan Obloj, and Prof. Xun Yu Zhou.

Thu, 19 Feb 2015

16:00 - 17:00
L3

Nonlinear Dynamics in Phononic Lattices

Chris Chong
(ETHZ)
Abstract
This talk concerns the behavior of acoustic waves within various nonlinear materials.  As a prototypical example we consider a system of discrete particles that interact nonlinearly through a so-called Hertzian contact.  With the use of analytical, numerical and experimental approaches we study the formation of solitary waves, dispersive shocks, and discrete breathers.
 
Thu, 19 Feb 2015

14:00 - 15:00
L5

Distinct solutions of nonlinear systems via deflation

Dr Patrick Farrell
((Oxford University))
Abstract

Nonlinear systems of partial differential equations (PDEs) may permit several distinct solutions. The typical current approach to finding distinct solutions is to start Newton's method with many different initial guesses, hoping to find starting points that lie in different basins of attraction. In this talk, we present an infinite-dimensional deflation algorithm for systematically modifying the residual of a nonlinear PDE problem to eliminate known solutions from consideration. This enables the Newton--Kantorovitch iteration to converge to several different solutions, even starting from the same initial guess. The deflated Jacobian is dense, but an efficient preconditioning strategy is devised, and the number of Krylov iterations is observed not to grow as solutions are deflated. The technique is then applied to computing distinct solutions of nonlinear PDEs, tracing bifurcation diagrams, and to computing multiple local minima of PDE-constrained optimisation problems.