Error bounds for block Gauss-Seidel solutions of coupled problems
A geometric interpretation of algebraic quantum mechanics
Abstract
We treat the problem of geometric interpretation of the formalism
of algebraic quantum mechanics as a special case of the general problem of
extending classical 'algebra - geometry' dualities (such as the
Gel'fand-Naimark theorem) to non-commutative setting.
I will report on some progress in establishing such dualities. In
particular, it leads to a theory of approximate representations of Weyl
algebras
in finite dimensional "Hilbert spaces". Some calculations based on this
theory will be discussed.
Functions of bounded variation on metric measure spaces
Abstract
Functions of bounded variation, abbreviated as BV functions, are defined in the Euclidean setting as very weakly differentiable functions that form a more general class than Sobolev functions. They have applications e.g. as solutions to minimization problems due to the good lower semicontinuity and compactness properties of the class. During the past decade, a theory of BV functions has been developed in general metric measure spaces, which are only assumed to be sets endowed with a metric and a measure. Usually a so-called doubling property of the measure and a Poincaré inequality are also assumed. The motivation for studying analysis in such a general setting is to gain an understanding of the essential features and assumptions used in various specific settings, such as Riemannian manifolds, Carnot-Carathéodory spaces, graphs, etc. In order to generalize BV functions to metric spaces, an equivalent definition of the class not involving partial derivatives is needed, and several other characterizations have been proved, while others remain key open problems of the theory.
Panu is visting Oxford until March 2015 and can be found in S2.48
Weak incariance principle for the local times of partial sums of Markov Chains
Abstract
Extended 3-dimensional topological field theories
Abstract
I will survey recent advances in our understanding of extended
3-dimensional topological field theories. I will describe recent work (joint
with B. Bartlett, C. Douglas, and J. Vicary) which gives an explicit
"generators and relations" classification of partially extended 3D TFTS
(assigning values only to 3-manifolds, surfaces, and 1-manifolds). This will
be compared to the fully-local case (which has been considered in joint work
with C. Douglas and N. Snyder).
14:15
An Abundance of K3 Fibrations and the Structure of the Landscape
Abstract
Even a cursory inspection of the Hodge plot associated with Calabi-Yau threefolds that are hypersurfaces in toric varieties reveals striking structures. These patterns correspond to webs of elliptic K3 fibrations whose mirror images are also elliptic K3 fibrations. Such manifolds arise from reflexive polytopes that can be cut into two parts along slices corresponding to the K3 fibers. Any two half-polytopes over a given slice can be combined into a reflexive polytope. This fact, together with a remarkable relation on the additivity of Hodge numbers, explains much of the structure of the observed patterns.
14:15
Conformal restriction: 3-point chordal case.
Abstract
Lawler, Schramm and Werner studied 2-point chordal restriction measures and gave several constructions using SLE tools.
It is possible to characterize 3-point chordal restriction measures in a similar manner. Their boundaries are SLE(8/3)-like curves with a slightly different drift term.
High-loop perturbative QFT from integrability
Abstract
The planar N=4 SYM is believed to be integrable. Following this thoroughly justified belief, its exact spectrum had been encoded recently into a quantum spectral curve (QSC). We can explicitly solve the QSC in various regimes; in particular, one can perform a highly-efficient weak coupling expansion.
I will explain how QSC looks like for the harmonic oscillator and then, using this analogy, introduce the QSC equations for the SYM spectrum. We will use these equations to compute a particular 6-loop conformal dimension in real time and then discuss explicit results (found up to 10-loop orders) as well as some general statements about the answer at any loop-order.
14:00
An optimal control approach for modelling Neutrophil cell migration
Abstract
Cell migration is of vital importance in many biological studies, hence robust cell tracking algorithms are needed for inference of dynamic features from (static) in vivo and in vitro experimental imaging data of cells migrating. In recent years much attention has been focused on the modelling of cell motility from physical principles and the development of state-of-the art numerical methods for the simulation of the model equations. Despite this, the vast majority of cell tracking algorithms proposed to date focus solely on the imaging data itself and do not attempt to incorporate any physical knowledge on cell migration into the tracking procedure. In this study, we present a mathematical approach for cell tracking, in which we formulate the cell tracking problem as an inverse problem for fitting a mathematical model for cell motility to experimental imaging data. The novelty of this approach is that the physics underlying the model for cell migration is encoded in the tracking algorithm. To illustrate this we focus on an example of Zebrafish (Danio rerio's larvae} Neutrophil migration and contrast an ad-hoc approach to cell tracking based on interpolation with the model fitting approach we propose in this talk.
Rank Dependent Utility and Risk Taking
Abstract
We analyze the portfolio choice problem of investors who maximize rank dependent utility in a single-period complete market. We propose a new
notion of less risk taking: choosing optimal terminal wealth that pays off more in bad states and less in good states of the economy. We prove that investors with a less risk averse preference relation in general choose more risky terminal wealth, receiving a risk premium in return for accepting conditional-zero-mean noise (more risk). Such general comparative static results do not hold for portfolio weights, which we demonstrate with a counter-example in a continuous-time model. This in turn suggests that our notion of less risk taking is more meaningful than the traditional notion based on holding less stocks.
This is a joint work with Xuedong He and Roy Kouwenberg.
Workshop with MEMS Schlumberger - Schlumberger Sensor Technology
Abstract
Details:
1) Shape optimization of a paddle for density-viscosity measurements in oilfield environment;
2) Phenomenology of Kapitza thermal resistance with coupling at the MD to macroscopic scale.
Twitter video indir
Twitter video indirme sitesi: https://indireyim.com/
Abstract
The classical conjecture of Serre (proved by Khare-Winterberger) states that a continuous, absolutely irreducible, odd representation of the absolute Galois group of Q on two-dimensional F_p-vector space is modular. We show how one can formulate its analogue in characteristic 0. In particular we discuss the weight part of the conjecture. This is a joint work with John Bergdall.
Lagrangian Floer theory
Abstract
Lagrangian Floer cohomology categorifies the intersection number of (half-dimensional) Lagrangian submanifolds of a symplectic manifold. In this talk I will describe how and when can we define Lagrangian Floer cohomology. In the case when Floer cohomology cannot be defined I will describe an alternative invariant known as the Fukaya (A-infinity) algebra.
SDEs with weighted local times and discontinuous coefficients, transmission boundary conditions for semilinear PDEs, and related BSDEs
Abstract
(Denis Talay, Inria — joint works with N. Champagnat, N. Perrin, S. Niklitschek Soto)
In this lecture we present recent results on SDEs with weighted local times and discontinuous coefficients. Their solutions allow one to construct probabilistic interpretations of semilinear PDEs with discontinuous coefficients and transmission boundary conditions in terms of BSDEs which do not satisfy classical conditions.
Gas-cushioned droplet impacts on porous surfaces and on heated surfaces with phase change
Abstract
Droplet impacts form an important part of many processes and a detailed
understanding of the impact dynamics is critical in determining any
subsequent splashing behaviour. Prior to touchdown a gas squeeze film is
set-up between the substrate and the approaching droplet. The pressure
build-up in this squeeze film deforms the droplet free-surface, trapping
a pocket of gas and delaying touchdown. In this talk I will discuss two
extensions of existing models of pre-impact gas-cushioned droplet
behaviour, to model droplet impacts with textured substrates and droplet
impacts with surfaces hot enough to induce pre-impact phase change.
In the first case the substrate will be modelled as a thin porous layer.
This produces additional pathways for some of the gas to escape and
results in less delayed touchdown compared to a flat plate. In the
second case ideas related to the evaporation of heated thin viscous
films will be used to model the phase change. The vapour produced from
the droplet is added to the gas film enhancing the existing cushioning
mechanism by generating larger trapped gas pockets, which may ultimately
prevent touchdown altogether once the temperature enters the Leidenfrost
regime.
Geometric Satake Equivalence
Abstract
Both sides of the geometric Langlands correspondence have natural Hecke
symmetries. I will explain an identification between the Hecke
symmetries on both sides via the geometric Satake equivalence. On the
abelian level it relates the topology of a variety associated to a group
and the representation category of its Langlands dual group.
Incomplete Cholesky preconditioners based on orthogonal dropping : theory and practice
Abstract
Incomplete Cholesky factorizations are commonly used as black-box preconditioners for the iterative solution of large sparse symmetric positive definite linear systems. Traditionally, incomplete
factorizations are obtained by dropping (i.e., replacing by zero) some entries of the factors during the factorization process. Here we consider a less common way to approximate the factors : through low-rank approximations of some off-diagonal blocks. We focus more specifically on approximation schemes that satisfy the orthogonality condition: the approximation should be orthogonal to the corresponding approximation error.
The resulting incomplete Cholesky factorizations have attractive theoretical properties. First, the underlying factorization process can be shown breakdown-free. Further, the condition number of the
preconditioned system, that characterizes the convergence rate of standard iterative schemes, can be shown bounded as a function of the accuracy of individual approximations. Hence, such a bound can benefit from better approximations, but also from some algorithmic peculiarities. Eventually, the above results can be shown to hold for any symmetric positive definite system matrix.
On the practical side, we consider a particular variant of the preconditioner. It relies on a nested dissection ordering of unknowns to insure an attractive memory usage and operations count. Further, it exploits in an algebraic way the low-rank structure present in system matrices that arise from PDE discretizations. A preliminary implementation of the method is compared with similar Cholesky and
incomplete Cholesky factorizations based on dropping of individual entries.
Interface motion in ill-posed diffusion equations
Abstract
ill-posed PDE, thus any limit dynamics might feature measure-valued solutions, phases interfaces, and hysteretic interface motion.
interfaces with non-trivial dynamics and study the rigorous passage to the limit for a piecewise affine nonlinearity.
11:00
Axiomatizing Q by "G_Q + ε"
Abstract
we discuss various conjectures about the absolute Galois group G_Q of the field Q of rational numbers and to what extent it encodes the elementary theory of Q.
16:00
Set functions.
Abstract
There is only one gap in the isoperimetric spectrum
Abstract
We saw earlier that a subquadratic isoperimetric inequality implies a linear one. I will give examples of groups, due to Brady and Bridson, which prove that this is the only gap in the isoperimetric spectrum.
12:30
The Artin approximation theorem in algebraic geometry
Abstract
Given a commutative ring A with ideal m, we consider the formal completion of A at m, and we ask when algebraic structures over the completion can be approximated by algebraic structures over the ring A itself. As we will see, Artin's approximation theorem tells us for which types of algebraic structures and which pairs (A,m) we can expect an affirmative answer. We will introduce some local notions from algebraic geometry, including formal and etale neighbourhoods. Then we will discuss some algebraic structures and rings arising in algebraic geometry and satisfying the conditions of the theorem, and show as a corollary how we can lift isomorphisms from formal neighbourhoods to etale neighbourhoods of varieties.
On universal right angled Artin groups
Abstract
the only permitted defining relators are commutators of the generators. These groups and their subgroups play an important role in Geometric Group Theory, especially in view of the recent groundbreaking results of Haglund, Wise, Agol, and others, showing that many groups possess finite index subgroups that embed into RAAGs.
In their recent work on limit groups over right angled Artin groups, Casals-Ruiz and Kazachkov asked whether for every natural number n there exists a single "universal" RAAG, A_n, containing all n-generated subgroups of RAAGs. Motivated by this question, I will discuss several results showing that "universal" (in various contexts) RAAGs generally do not exist. I will also mention some positive results about universal groups for finitely presented n-generated subgroups of direct products of free and limit groups.