Optimal transport and Skorokhod embedding
Abstract
It is well known that several solutions to the Skorokhod problem
optimize certain ``cost''- or ``payoff''-functionals. We use the
theory of Monge-Kantorovich transport to study the corresponding
optimization problem. We formulate a dual problem and establish
duality based on the duality theory of optimal transport. Notably
the primal as well as the dual problem have a natural interpretation
in terms of model-independent no arbitrage theory.
In optimal transport the notion of c-monotonicity is used to
characterize the geometry of optimal transport plans. We derive a
similar optimality principle that provides a geometric
characterization of optimal stopping times. We then use this
principle to derive several known solutions to the Skorokhod
embedding problem and also new ones.
This is joint work with Mathias Beiglböck and Alex Cox.
Finite size corrections in the gamma_i-deformed N=4 SYM theory
Abstract
16:00
Some subgroups of topological Kac–Moody groups
Abstract
This talk is based on a joint work with B. Rémy (Lyon) in which we study some subgroups of topological Kac–Moody groups and the implications of this study on the subgroup structure of the ambient Kac–Moody group.
14:30
Embeddability between right-angled Artin groups and its relation to model theory and geometry
Abstract
In this talk we will discuss when one right-angled Artin group is a subgroup of another one and explain how this basic algebraic problem may provide answers to questions in geometric group theory and model theory such as classification of right-angled Artin groups up to quasi-isometries and universal equivalence.
Numerical modelling of river dynamics
Abstract
Numerical models provide valuable tools for integrating understanding of riverine processes and morphology. Moreover, they have considerable potential for use in investigating river responses to environmental change and catchment management, and for aiding the interpretation of alluvial deposits and landforms. For this potential to be realised fully, such models must be capable of representing diverse river styles, and the spatial and temporal transitions between styles that can be driven by environmental forcing. However, while numerical modelling of rivers has advanced significantly over the past few decades, this has been accomplished largely by developing separate approaches to modelling different styles of river (e.g., meanders and braided networks). In addition, there has been considerable debate about what should constitute the ‘basic ingredients’ of river models, and the degree to which the environmental processes governing river evolution can be simplified in such models. This seminar aims to examine these unresolved issues, with particular reference to the simulation of large rivers and their floodplains.
13:15
Cutting and pasting: a group for Frankenstein
Abstract
We know since almost a century that a ball can be decomposed into five pieces and these pieces rearranged so as to produce two balls of the same size as the original. This apparent paradox has led von Neumann to the notion of amenability which is now much studied in many areas of mathematics. However, the initial paradox has remained tied down to an elementary property of free groups of rotations for most of the 20th century. I will describe recent progress leading to new paradoxical groups.
A class of multifractal processes constructed using an embedded branching process
Abstract
Traditional diffusion models for random phenomena have paths with Holder
regularity just greater than 1/2 almost surely but there are situations
arising in finance and telecommunications where it is natural to look
for models in which the Holder regularity of the paths can vary.
Such processes are called multifractal and we will construct a class of
such processes on R using ideas from branching processes.
Using connections with multitype branching random walk we will be able
to compute the multifractal spectrum which captures the variability in
the Holder regularity. In addition, if we observe one of our processes
at a fixed resolution then we obtain a finite Markov representation,
which allows efficient simulation.
As an application, we fit the model to some AUD-USD exchange rate data.
Joint work with Geoffrey Decrouez and Ben Hambly
On Local Existence of Shallow Water Equations with Vacuum
Abstract
In this talk, I will present our new local existence result to the shallow water equations describing the motions of vertically averaged flows, which are closely related to the $2$-D isentropic Navier-Stokes equations for compressible fluids with density-dependent viscosity coefficients. Via introducing the notion of regular solutions, the local existence of classical solutions is established for the case that the viscosity coefficients are degenerate and the initial data are arbitrarily large with vacuum appearing in the far field.
Study of the Prandtl boundary layer theory
Abstract
We shall talk our recent works on the well-posedness of the Prandtl boundary layer equations both in two and three space variables. For the two-dimensional problem, we obtain the well-posedness in the Sobolev spaces by using an energy method under the monotonicity assumption of tangential velocity, and for the three-dimensional Prandtl equations, we construct a special solution by using the Corocco transformation, and obtain it is linearly stable with respect to any three-dimensional perturbation. These works are collaborated with R. Alexandre, C. J. Liu, C. Xu and T. Yang.
Homogenising the wave equation: do we even understand the 1-D problem?
Abstract
Seismic exploration in the oil industry is one example where wave equations are used as models. When the wave speed is spatially varying one is naturally concerned with questions of homogenisation or upscaling, where one would like to calculate an effective or average wave speed. As a canonical problem this short workshop will introduce the one-dimensional acoustic wave equation with a rapidly varying wave speed, perhaps even a periodic variation. Three questions will be asked: (i) how do you calculate a sensible average wave speed (ii) does the wave equation suffice or is there a change of form after averaging and (iii) if one can induce any particular excitation at one end of a finite one-dimensional medium, and make any observations that we like at that end, what - if anything - can be inferred about the spatial variability of the wave speed?
17:00
The Geometry of Origami: How the Ancient Japanese Art Triumphed over Euclid
Moment maps in gauge theory
Abstract
Since their introduction in the context of symplectic geometry, moment maps and symplectic quotients have been generalized in many different directions. In this talk I plan to give an introduction to the notions of hyperkähler moment map and hyperkähler quotient through two examples, apparently very different, but related by the so called ADHM construction of instantons; the moduli space of instantons and a space of complex matrices arising from monads.
Construction of 2-adic integral canonical models of Hodge-type Shimura varieties
Abstract
We extend Kisin's construction of integral canonical models of Hodge-type Shimura
varieties to p=2, using Dieudonné display theory.
16:00
Chaotic dynamics in a deterministic adaptive network model of attitude formation in social groups
Abstract
Adaptive network models, in which node states and network topology coevolve, arise naturally in models of social dynamics that incorporate homophily and social influence. Homophily relates the similarity between pairs of agents' states to their network coupling strength, whilst social influence causes the convergence of coupled agents' states. In this talk, I will describe a deterministic adaptive network model of attitude formation in social groups that incorporates these effects, and in which the attitudinal dynamics are represented by an activator-inhibitor process. I will show that consensus, corresponding to all nodes adopting the same attitudinal state and being fully connected, may destabilise via Turing instability, giving rise to chaotic dynamics. For the case where there are just two agents, I will illustrate, using numerical continuation, how such chaotic dynamics arise.
Time-Consistent and Market-Consistent Evaluations
Abstract
We consider evaluation methods for payoffs with an inherent
financial risk as encountered for instance for portfolios held
by pension funds and insurance companies. Pricing such payoffs
in a way consistent to market prices typically involves
combining actuarial techniques with methods from mathematical
finance. We propose to extend standard actuarial principles by
a new market-consistent evaluation procedure which we call `two
step market evaluation.' This procedure preserves the structure
of standard evaluation techniques and has many other appealing
properties. We give a complete axiomatic characterization for
two step market evaluations. We show further that in a dynamic
setting with continuous stock prices every evaluation which is
time-consistent and market-consistent is a two step market
evaluation. We also give characterization results and examples
in terms of $g$-expectations in a Brownian-Poisson setting.
An introduction to infinity categories.
Abstract
Infinity categories simultaneously generalize topological spaces and categories. As a result, their study benefits from a combination of techniques from homotopy theory and category theory. While the theory of ordinary categories provides a suitable context to analyze objects up to isomorphism (e.g. abelian groups), the theory of infinity categories provides a reasonable framework to study objects up to a weaker concept of identification (e.g. complexes of abelian groups). In the talk, we will introduce infinity categories from scratch, mention some of the fundamental results, and try to illustrate some features in concrete examples.
14:00
Towards robust and scalable algebraic domain decomposition - CANCELLED
Abstract
PLEASE NOTE: THIS EVENT HAS BEEN CANCELLED
11:00
Demushkin Fields and Valuations
Abstract
Brady's theorem about subgroups of hyperbolic groups
Abstract
Brady showed that there are hyperbolic groups with non-hyperbolic finitely presented subgroups. I will present a new construction of this kind using Bestvina-Brady Morse theory.
10:30
Random Walks on Mapping Class Groups
Abstract
An important moral truth about the mapping class group of a closed orientable surface is the following: a generic mapping class has no power fixing a finite family of simple closed curves on the surface. Such "generic" elements are called pseudo-Anosov. In this talk I will discuss one instantiation of this principle, namely that the probability of a simple random walk on the mapping class group returning a non-pseudo Anosov element decays exponentially quickly.
The Haagerup property is not a quasi-isometry invariant (after M. Carette)
Abstract
A finitely generated group has the Haagerup property if it admits a proper isometric action on a Hilbert space. It was a long open question whether Haagerup property is a quasi-isometry invariant. The negative answer was recently given by Mathieu Carette, who constructed two quasi-isometric generalized Baumslag-Solitar groups, one with the Haagerup property, the other not. Elaborating on these examples, we proved (jointly with S. Arnt and T. Pillon) that the equivariant Hilbert compression is not a quasi-isometry invariant. The talk will be devoted to describing Carette's examples.
Variational Ensemble Filters for Sequential Inverse Problems
Abstract
Given a model dynamical system, a model of any measuring apparatus relating states to observations, and a prior assessment of uncertainty, the probability density of subsequent system states, conditioned upon the history of the observations, is of some practical interest.
When observations are made at discrete times, it is known that the evolving probability density is a solution of the Bayesian filtering equations. This talk will describe the difficulties in approximating the evolving probability density using a Gaussian mixture (i.e. a sum of Gaussian densities). In general this leads to a sequence of optimisation problems and related high-dimensional integrals. There are other problems too, related to the necessity of using a small number of densities in the mixture, the requirement to maintain sparsity of any matrices and the need to compute first and, somewhat disturbingly, second derivatives of the misfit between predictions and observations. Adjoint methods, Taylor expansions, Gaussian random fields and Newton’s method can be combined to, possibly, provide a solution. The approach is essentially a combination of filtering methods and '4-D Var’ methods and some recent progress will be described.