Mon, 12 May 2014

14:15 - 15:15
Oxford-Man Institute

Optimal transport and Skorokhod embedding

MARTIN HEUSMANN
(University of Bonn)
Abstract

It is well known that several solutions to the Skorokhod problem

optimize certain ``cost''- or ``payoff''-functionals. We use the

theory of Monge-Kantorovich transport to study the corresponding

optimization problem. We formulate a dual problem and establish

duality based on the duality theory of optimal transport. Notably

the primal as well as the dual problem have a natural interpretation

in terms of model-independent no arbitrage theory.

In optimal transport the notion of c-monotonicity is used to

characterize the geometry of optimal transport plans. We derive a

similar optimality principle that provides a geometric

characterization of optimal stopping times. We then use this

principle to derive several known solutions to the Skorokhod

embedding problem and also new ones.

This is joint work with Mathias Beiglböck and Alex Cox.

Mon, 12 May 2014

12:00 - 13:00
L5

Finite size corrections in the gamma_i-deformed N=4 SYM theory

Christoph Seig
(Humboldt University)
Abstract
The gamma_i-deformed N=4 SYM was proposed as the conformal field theory in a non-supersymmetric deformation of the AdS/CFT correspondence. As we have shown, conformal invariance is, however, broken in this theory by running double-trace couplings. Although these couplings are apparently suppressed in 't Hooft's planar limit, they give rise to finite size corrections in the planar spectrum. In particular, they should be considered in the integrability-based formulation of the planar spectral problem. In the talk, I will explain our results in detail and also discuss possible implications for the conjectured integrability-based approach.
Fri, 09 May 2014
16:00
L6

Some subgroups of topological Kac–Moody groups

Inna Capdeboscq
(Warwick)
Abstract

This talk is based on a joint work with B. Rémy (Lyon) in which we study some subgroups of topological Kac–Moody groups and the implications of this study on the subgroup structure of the ambient Kac–Moody group.

Fri, 09 May 2014
14:30
L6

Embeddability between right-angled Artin groups and its relation to model theory and geometry

Montserrat Casals-Ruiz
(Oxford)
Abstract

In this talk we will discuss when one right-angled Artin group is a subgroup of another one and explain how this basic algebraic problem may provide answers to questions in geometric group theory and model theory such as classification of right-angled Artin groups up to quasi-isometries and universal equivalence.

Fri, 09 May 2014

14:15 - 15:15
C6

Numerical modelling of river dynamics

Andrew Nicholas
(University of Exeter)
Abstract

Numerical models provide valuable tools for integrating understanding of riverine processes and morphology. Moreover, they have considerable potential for use in investigating river responses to environmental change and catchment management, and for aiding the interpretation of alluvial deposits and landforms. For this potential to be realised fully, such models must be capable of representing diverse river styles, and the spatial and temporal transitions between styles that can be driven by environmental forcing. However, while numerical modelling of rivers has advanced significantly over the past few decades, this has been accomplished largely by developing separate approaches to modelling different styles of river (e.g., meanders and braided networks). In addition, there has been considerable debate about what should constitute the ‘basic ingredients’ of river models, and the degree to which the environmental processes governing river evolution can be simplified in such models. This seminar aims to examine these unresolved issues, with particular reference to the simulation of large rivers and their floodplains.

Fri, 09 May 2014
13:15
L6

Cutting and pasting: a group for Frankenstein

Nicolas Monod
(EPFL)
Abstract

We know since almost a century that a ball can be decomposed into five pieces and these pieces rearranged so as to produce two balls of the same size as the original. This apparent paradox has led von Neumann to the notion of amenability which is now much studied in many areas of mathematics. However, the initial paradox has remained tied down to an elementary property of free groups of rotations for most of the 20th century. I will describe recent progress leading to new paradoxical groups.

Fri, 09 May 2014

13:00 - 14:00
L5

A class of multifractal processes constructed using an embedded branching process

Owen Jones
Abstract

Traditional diffusion models for random phenomena have paths with Holder

regularity just greater than 1/2 almost surely but there are situations

arising in finance and telecommunications where it is natural to look

for models in which the Holder regularity of the paths can vary.

Such processes are called multifractal and we will construct a class of

such processes on R using ideas from branching processes.

Using connections with multitype branching random walk we will be able

to compute the multifractal spectrum which captures the variability in

the Holder regularity. In addition, if we observe one of our processes

at a fixed resolution then we obtain a finite Markov representation,

which allows efficient simulation.

As an application, we fit the model to some AUD-USD exchange rate data.

Joint work with Geoffrey Decrouez and Ben Hambly

Fri, 09 May 2014

12:00 - 13:00
L6

On Local Existence of Shallow Water Equations with Vacuum

Prof. Yachun Li
(Shanghai JiaoTong University)
Abstract

In this talk, I will present our new local existence result to the shallow water equations describing the motions of vertically averaged flows, which are closely related to the $2$-D isentropic Navier-Stokes equations for compressible fluids with density-dependent viscosity coefficients. Via introducing the notion of regular solutions, the local existence of classical solutions is established for the case that the viscosity coefficients are degenerate and the initial data are arbitrarily large with vacuum appearing in the far field.

Fri, 09 May 2014

11:00 - 12:00
L6

Study of the Prandtl boundary layer theory

Prof. Ya-Guang Wang
(Shanghai JiaoTong University)
Abstract

We shall talk our recent works on the well-posedness of the Prandtl boundary layer equations both in two and three space variables. For the two-dimensional problem, we obtain the well-posedness in the Sobolev spaces by using an energy method under the monotonicity assumption of tangential velocity, and for the three-dimensional Prandtl equations, we construct a special solution by using the Corocco transformation, and obtain it is linearly stable with respect to any three-dimensional perturbation. These works are collaborated with R. Alexandre, C. J. Liu, C. Xu and T. Yang.

Fri, 09 May 2014

10:00 - 11:00
L5

Homogenising the wave equation: do we even understand the 1-D problem?

Chris Farmer and John Ockendon
(Oxford)
Abstract

Seismic exploration in the oil industry is one example where wave equations are used as models. When the wave speed is spatially varying one is naturally concerned with questions of homogenisation or upscaling, where one would like to calculate an effective or average wave speed. As a canonical problem this short workshop will introduce the one-dimensional acoustic wave equation with a rapidly varying wave speed, perhaps even a periodic variation. Three questions will be asked: (i) how do you calculate a sensible average wave speed (ii) does the wave equation suffice or is there a change of form after averaging and (iii) if one can induce any particular excitation at one end of a finite one-dimensional medium, and make any observations that we like at that end, what - if anything - can be inferred about the spatial variability of the wave speed?

Thu, 08 May 2014

16:00 - 17:00
C6

Moment maps in gauge theory

Lucas Branco
Abstract

Since their introduction in the context of symplectic geometry, moment maps and symplectic quotients have been generalized in many different directions. In this talk I plan to give an introduction to the notions of hyperkähler moment map and hyperkähler quotient through two examples, apparently very different, but related by the so called ADHM construction of instantons; the moduli space of instantons and a space of complex matrices arising from monads.

Thu, 08 May 2014
16:00
L1

Chaotic dynamics in a deterministic adaptive network model of attitude formation in social groups

Jonathan Ward
(Leeds)
Abstract

Adaptive network models, in which node states and network topology coevolve, arise naturally in models of social dynamics that incorporate homophily and social influence. Homophily relates the similarity between pairs of agents' states to their network coupling strength, whilst social influence causes the convergence of coupled agents' states. In this talk, I will describe a deterministic adaptive network model of attitude formation in social groups that incorporates these effects, and in which the attitudinal dynamics are represented by an activator-inhibitor process. I will show that consensus, corresponding to all nodes adopting the same attitudinal state and being fully connected, may destabilise via Turing instability, giving rise to chaotic dynamics. For the case where there are just two agents, I will illustrate, using numerical continuation, how such chaotic dynamics arise.

Thu, 08 May 2014

16:00 - 17:30
L4

Time-Consistent and Market-Consistent Evaluations

Mitja Stadje
(Tilburg University)
Abstract

We consider evaluation methods for payoffs with an inherent

financial risk as encountered for instance for portfolios held

by pension funds and insurance companies. Pricing such payoffs

in a way consistent to market prices typically involves

combining actuarial techniques with methods from mathematical

finance. We propose to extend standard actuarial principles by

a new market-consistent evaluation procedure which we call `two

step market evaluation.' This procedure preserves the structure

of standard evaluation techniques and has many other appealing

properties. We give a complete axiomatic characterization for

two step market evaluations. We show further that in a dynamic

setting with continuous stock prices every evaluation which is

time-consistent and market-consistent is a two step market

evaluation. We also give characterization results and examples

in terms of $g$-expectations in a Brownian-Poisson setting.

Thu, 08 May 2014

14:00 - 16:00
L4

An introduction to infinity categories.

Tobias Dyckerhoff
Abstract

Infinity categories simultaneously generalize topological spaces and categories. As a result, their study benefits from a combination of techniques from homotopy theory and category theory. While the theory of ordinary categories provides a suitable context to analyze objects up to isomorphism (e.g. abelian groups), the theory of infinity categories provides a reasonable framework to study objects up to a weaker concept of identification (e.g. complexes of abelian groups). In the talk, we will introduce infinity categories from scratch, mention some of the fundamental results, and try to illustrate some features in concrete examples.

Thu, 08 May 2014
11:00
C5

Demushkin Fields and Valuations

Kristian Strommen
Abstract

I will give an outline of ongoing work with Jochen Koenigsmann on recovering valuations from Galois-theoretic data. In particular, I will sketch a proof of how to recover, from an isomorphism G_K(2) \simeq G_k(2) of maximal pro-2 quotients of absolute Galois groups, where k is the field of 2-adic numbers, a valuation with nice properties. The latter group is a natural example of a so-called Demushkin group.
Everyone welcome! 
Wed, 07 May 2014

16:00 - 17:00
C6

Brady's theorem about subgroups of hyperbolic groups

Yash Lodha
(Cornell)
Abstract

Brady showed that there are hyperbolic groups with non-hyperbolic finitely presented subgroups. I will present a new construction of this kind using Bestvina-Brady Morse theory.

Wed, 07 May 2014
10:30
N3.12

Random Walks on Mapping Class Groups

Henry Bradford
Abstract

An important moral truth about the mapping class group of a closed orientable surface is the following: a generic mapping class has no power fixing a finite family of simple closed curves on the surface. Such "generic" elements are called pseudo-Anosov. In this talk I will discuss one instantiation of this principle, namely that the probability of a simple random walk on the mapping class group returning a non-pseudo Anosov element decays exponentially quickly.

Tue, 06 May 2014

17:00 - 18:00
C5

The Haagerup property is not a quasi-isometry invariant (after M. Carette)

Alain Valette
(Universite de Neuchatel)
Abstract

A finitely generated group has the Haagerup property if it admits a proper isometric action on a Hilbert space. It was a long open question whether Haagerup property is a quasi-isometry invariant. The negative answer was recently given by Mathieu Carette, who constructed two quasi-isometric generalized Baumslag-Solitar groups, one with the Haagerup property, the other not. Elaborating on these examples, we proved (jointly with S. Arnt and T. Pillon) that the equivariant Hilbert compression is not a quasi-isometry invariant. The talk will be devoted to describing Carette's examples.

Tue, 06 May 2014

14:30 - 15:00
L5

Variational Ensemble Filters for Sequential Inverse Problems

Chris Farmer
(University of Oxford)
Abstract

Given a model dynamical system, a model of any measuring apparatus relating states to observations, and a prior assessment of uncertainty, the probability density of subsequent system states, conditioned upon the history of the observations, is of some practical interest.

When observations are made at discrete times, it is known that the evolving probability density is a solution of the Bayesian filtering equations. This talk will describe the difficulties in approximating the evolving probability density using a Gaussian mixture (i.e. a sum of Gaussian densities). In general this leads to a sequence of optimisation problems and related high-dimensional integrals. There are other problems too, related to the necessity of using a small number of densities in the mixture, the requirement to maintain sparsity of any matrices and the need to compute first and, somewhat disturbingly, second derivatives of the misfit between predictions and observations. Adjoint methods, Taylor expansions, Gaussian random fields and Newton’s method can be combined to, possibly, provide a solution. The approach is essentially a combination of filtering methods and '4-D Var’ methods and some recent progress will be described.