Tue, 04 Mar 2014

17:00 - 18:00
C5

Maximal subgroups of exceptional groups of Lie type and morphisms of algebraic groups

Dr David Craven
(University of Birmingham)
Abstract

The maximal subgroups of the exceptional groups of Lie type

have been studied for many years, and have many applications, for

example in permutation group theory and in generation of finite

groups. In this talk I will survey what is currently known about the

maximal subgroups of exceptional groups, and our recent work on this

topic. We explore the connection with extending morphisms from finite

groups to algebraic groups.

Tue, 04 Mar 2014
16:00
L1

“Why there are no 3-headed monsters, resolving some problems with brain tumours, divorce prediction and how to save marriages”

Professor James D Murray
(University of Oxford & Senior Scholar)
Abstract

 “Understanding the generation and control of pattern and form is still a challenging and major problem in the biomedical sciences. I shall describe three very different problems. First I shall briefly describe the development and application of the mechanical theory of morphogenesis and the discovery of morphogenetic laws in limb development and how it was used to move evolution backwards. I shall then describe a surprisingly informative model, now used clinically, for quantifying the growth of brain tumours, enhancing imaging techniques and quantifying individual patient treatment protocols prior to their use.  Among other things, it is used to estimate patient life expectancy and explain why some patients live longer than others with the same treatment protocols. Finally I shall describe an example from the social sciences which quantifies marital interaction that is used to predict marital stability and divorce.  From a large study of newly married couples it had a 94% accuracy. I shall show how it has helped design a new scientific marital therapy which is currently used in clinical practice.”

 

Tue, 04 Mar 2014

15:45 - 16:45
L4

Factorization homology is a fully extended TFT

Damien Calaque
(ETH Zurich)
Abstract

We will start with a recollection on factorization algebras and factorization homology. We will then explain what fully extended TFTs are, after Jacob Lurie. And finally we will see how factorization homology can be turned into a fully extended TFT. This is a joint work with my student Claudia Scheimbauer.

Tue, 04 Mar 2014
15:30
Comlab

"Stochastic Petri nets, chemical reaction networks and Feynman diagrams"

John Baez
(University of California)
Abstract

 Nature and the world of human technology are full of
networks. People like to draw diagrams of networks: flow charts,
electrical circuit diagrams, signal flow diagrams, Bayesian networks,
Feynman diagrams and the like. Mathematically-minded people know that
in principle these diagrams fit into a common framework: category
theory. But we are still far from a unified theory of networks.

Tue, 04 Mar 2014

14:00 - 15:00
L4

Lagrangian structures on derived mapping stacks

Damien Calaque
(ETH Zurich)
Abstract

We will explain how the result of Pantev-Toën-Vaquié-Vezzosi, about shifted symplectic structures on mapping stacks, can be extended to relative mapping stacks and Lagrangian structures. We will also provide applications in ordinary symplectic geometry and topological field theories.

Tue, 04 Mar 2014

14:00 - 15:00
L5

Towards realistic performance for iterative methods on shared memory machines

Shengxin (Jude) Zhu
(University of Oxford)
Abstract

This talk introduces a random linear model to investigate the memory bandwidth barrier effect on current shared memory computers. Based on the fact that floating-point operations can be hidden by implicit compiling techniques, the runtime for memory intensive applications can be modelled by memory reference time plus a random term. The random term due to cache conflicts, data reuse and other environmental factors is proportional to memory reference volume. Statistical techniques are used to quantify the random term and the runtime performance parameters. Numerical results based on thousands representative matrices from various applications are presented, compared, analysed and validated to confirm the proposed model. The model shows that a realistic and fair metric for performance of iterative methods and other memory intensive applications should consider the memory bandwidth capability and memory efficiency.

Tue, 04 Mar 2014

14:00 - 14:30
L5

Euler-Maclaurin and Newton-Gregory Interpolants

Mohsin Javed
(University of Oxford)
Abstract

The Euler-Maclaurin formula is a quadrature rule based on corrections to the trapezoid rule using odd derivatives at the end-points of the function being integrated. It appears that no one has ever thought about a related function approximation that will give us the Euler-Maclaurin quadrature rule, i.e., just like we can derive Newton-Cotes quadrature by integrating polynomial approximations of the function, we investigate, what function approximation will integrate exactly to give the corresponding Euler-Maclaurin quadrature. It turns out, that the right function approximation is a combination of a trigonometric interpolant and a polynomial.

To make the method more practical, we also look at the closely related Newton-Gregory quadrature, which is very similar to the Euler-Maclaurin formula but instead of derivatives, uses finite differences. Following almost the same procedure, we find another mixed function approximation, derivative free, whose exact integration yields the Newton-Gregory quadrature rule.

Mon, 03 Mar 2014

17:00 - 18:00
L6

Elliptic and parabolic systems with general growth

Paolo Marcellini
(University of Florence)
Abstract

Motivated by integrals of the Calculus of Variations considered in

Nonlinear Elasticity, we study mathematical models which do not fit in

the classical existence and regularity theory for elliptic and

parabolic Partial Differential Equations. We consider general

nonlinearities with non-standard p,q-growth, both in the elliptic and

in the parabolic contexts. In particular, we introduce the notion of

"variational solution/parabolic minimizer" for a class of

Cauchy-Dirichlet problems related to systems of parabolic equations.

Mon, 03 Mar 2014

16:00 - 17:00
C5

The elliptic curve discrete logarithm problem

Christophe Petit
Abstract

The elliptic curve discrete logarithm problem (ECDLP) is commonly believed to be much harder than its finite field counterpart, resulting in smaller cryptography key sizes. In this talk, we review recent results suggesting that ECDLP is not as hard as previously expected in the case of composite fields.

We first recall how Semaev's summation polynomials can be used to build index calculus algorithms for elliptic curves over composite fields. These ideas due to Pierrick Gaudry and Claus Diem reduce ECDLP over composite fields to the resolution of polynomial systems of equations over the base field.

We then argue that the particular structure of these systems makes them much easier to solve than generic systems of equations. In fact, the systems involved here can be seen as natural extensions of the well-known HFE systems, and many theoretical arguments and experimental results from HFE literature can be generalized to these systems as well.

Finally, we consider the application of this heuristic analysis to a particular ECDLP index calculus algorithm due to Claus Diem. As a main consequence, we provide evidence that ECDLP can be solved in heuristic subexponential time over composite fields. We conclude the talk with concrete complexity estimates for binary curves and perspectives for furture works.

The talk is based on joint works with Jean-Charles Faugère, Timothy Hodges, Yung-Ju Huang, Ludovic Perret, Jean-Jacques Quisquater, Guénaël Renault, Jacob Schlatter, Naoyuki Shinohara, Tsuyoshi Takagi

Mon, 03 Mar 2014

15:45 - 16:45
Eagle House

TBC

ATUL SHEKHAR
(TU Berlin)
Mon, 03 Mar 2014

15:30 - 16:30
L6

Cobordism categories, bivariant A-theory and the A-theory characteristic

George Raptis
(Osnabrueck and Regensburg)
Abstract

The A-theory characteristic of a fibration is a

map to Waldhausen's algebraic K-theory of spaces which

can be regarded as a parametrized Euler characteristic of

the fibers. Regarding the classifying space of the cobordism

category as a moduli space of smooth manifolds, stable under

extensions by cobordisms, it is natural to ask whether the

A-theory characteristic can be extended to the cobordism

category. A candidate such extension was proposed by Bökstedt

and Madsen who defined an infinite loop map from the d-dimensional

cobordism category to the algebraic K-theory of BO(d). I will

discuss the connections between this map, the A-theory

characteristic and the smooth Riemann-Roch theorem of Dwyer,

Weiss and Williams.

Mon, 03 Mar 2014
14:15
L5

The geometry of constant mean curvature disks embedded in R^3.

Giuseppe Tinaglia
(KCL)
Abstract

In this talk I will discuss results on the geometry of constant mean curvature (H\neq 0) disks embedded in R^3. Among other

things I will prove radius and curvature estimates for such disks. It then follows from the radius estimate that the only complete, simply connected surface embedded in R^3 with constant mean curvature is the round sphere. This is joint work with Bill Meeks.

Mon, 03 Mar 2014

14:15 - 15:15
Eagle House

tbc

JOSCHA DIEHL
(BERLIN UNIVERSITY)
Mon, 03 Mar 2014
14:00
C6

Generalised metrisable spaces and the normal Moore space conjecture

Robert Leek
(Oxford)
Abstract

We will introduce a few class of generalised metrisable

properties; that is, properties that hold of all metrisable spaces that

can be used to generalise results and are in some sense 'close' to

metrisability. In particular, we will discuss Moore spaces and the

independence of the normal Moore space conjecture - Is every normal

Moore space metrisable?

Mon, 03 Mar 2014

12:00 - 13:00
L5

On black hole thermodynamics from super Yang-Mills

Toby Wiseman
(Imperial College)
Abstract
I will review the link between 1+p dimensional maximally supersymmetric Yang-Mills and the black hole thermodynamics of Dp-branes via the gauge/string correspondence. The finite temperature behaviour of Dp-brane supergravity black holes looks very alien from the perspective of the dual strongly coupled Yang-Mills. However, I will argue that in a natural set of Yang-Mills variables, the classical moduli (which unfortunately are still strongly coupled), certain features of these thermodynamics become quite transparent. A physical picture then emerges of the black holes as a strongly interacting 'soup' of these moduli.
Fri, 28 Feb 2014

16:30 - 17:30
L1

Regularity and singularity of area-minimizing currents

Professor Camillo De Lellis
(Universität Zürich)
Abstract

The Plateau's problem, named after the Belgian physicist J. Plateau, is a classic in the calculus of variations and regards minimizing the area among all surfaces spanning a given contour. Although Plateau's original concern were $2$-dimensional surfaces in the $3$-dimensional space, generations of mathematicians have considered such problem in its generality. A successful existence theory, that of integral currents, was developed by De Giorgi in the case of hypersurfaces in the fifties and by Federer and Fleming in the general case in the sixties. When dealing with hypersurfaces, the minimizers found in this way are rather regular: the corresponding regularity theory has been the achievement of several mathematicians in the 60es, 70es and 80es (De Giorgi, Fleming, Almgren, Simons, Bombieri, Giusti, Simon among others).

In codimension higher than one, a phenomenon which is absent for hypersurfaces, namely that of branching, causes very serious problems: a famous theorem of Wirtinger and Federer shows that any holomorphic subvariety in $\mathbb C^n$ is indeed an area-minimizing current. A celebrated monograph of Almgren solved the issue at the beginning of the 80es, proving that the singular set of a general area-minimizing (integral) current has (real) codimension at least 2. However, his original (typewritten) manuscript was more than 1700 pages long. In a recent series of works with Emanuele Spadaro we have given a substantially shorter and simpler version of Almgren's theory, building upon large portions of his program but also bringing some new ideas from partial differential equations, metric analysis and metric geometry. In this talk I will try to give a feeling for the difficulties in the proof and how they can be overcome.

Fri, 28 Feb 2014

16:00 - 17:00
L4

CALF: A period map for global derived stacks

Carmelo Di Natale
(Cambridge University)
Abstract

In the sixties Griffiths constructed a holomorphic map, known as the local period map, which relates the classification of smooth projective varieties to the associated Hodge structures. Fiorenza and Manetti have recently described it in terms of Schlessinger's deformation functors and, together with Martinengo, have started to look at it in the context of Derived Deformation Theory. In this talk we propose a rigorous way to lift such an extended version of Griffiths period map to a morphism of derived deformation functors and use this to construct a period morphism for global derived stacks.

Fri, 28 Feb 2014

14:30 - 15:30
C5

CALF: Universal D-modules

Emily Cliff
(Oxford University)
Abstract

A universal D-module of dimension n is a rule assigning to every family of smooth $n$-dimensional varieties a family of D-modules, in a compatible way. This seems like a huge amount of data, but it turns out to be entirely determined by its value over a single formal disc. We begin by recalling (or perhaps introducing) the notion of a D-module, and proceed to define the category $M_n$ of universal D-modules. Following Beilinson and Drinfeld we define the Gelfand-Kazhdan structure over a smooth variety (or family of varieties) of dimension $n$, and use it to build examples of universal D-modules and to exhibit a correspondence between $M_n$ and the category of modules over the group-scheme of continuous automorphisms of formal power series in $n$ variables

Fri, 28 Feb 2014

13:00 - 14:00
L6

Time reversal, n-marginal Root embedding and its optimal stopping interpretation

Jan Obloj
Abstract

I explore some new ideas on embedding problems for Brownian motion (and other Markov processes). I show how a (forward) Skorokhod embedding problem is transformed into an optimal stopping problem for the time-reversed process (Markov process in duality). This is deduced from the PDE (Variational Inequalities) interpretation of the classical results but then shown using probabilistic techniques and extended to give an n-marginal Root embedding. I also discuss briefly how to extend the approach to other embeddings such as the Azema-Yor embedding.

Thu, 27 Feb 2014

17:15 - 18:15
L6

Use of truth in logic

Kentaro Fujimoto
(Bristol)
Abstract

Formal truth theory sits between mathematical logic and philosophy. In this talk, I will try to give a partial overview of formal truth theory, from my particular perspective and research, in connection to some areas of mathematical logic.