Thu, 13 Feb 2014

16:30 - 17:30
L1

Running the MMP via homological methods (COW SEMINAR)

Michael Wemyss
(University of Edinburgh)
Abstract

I will explain how, given a crepant morphism with one-dimensional fibres between 3-folds, it is possible to use noncommutative deformations to run the MMP in a satisfyingly algorithmic fashion.  As part of this, a flop is viewed homologically as the solution to a universal property, and so is constructed not by changing GIT, but instead by changing the algebra. Carrying this extra information of the new algebra allows us to continue to flop, and thus continue the MMP, without having to calculate everything from scratch. Proving things in this manner does in fact have other consequences too, and I will explain some them, both theoretical and computational.

Thu, 13 Feb 2014

16:00 - 17:00
C6

Cancelled

Cancelled
Thu, 13 Feb 2014

16:00 - 17:00
L5

Covering systems of congruences

Bob Hough
(Oxford University)
Abstract

A distinct covering system of congruences is a collection

\[

(a_i \bmod m_i), \qquad 1\ \textless\ m_1\ \textless\ m_2\ \textless\ \ldots\ \textless\ m_k

\]

whose union is the integers. Erd\"os asked whether there are covering systems for which $m_1$ is arbitrarily large. I will describe my negative answer to this problem, which involves the Lov\'{a}sz Local Lemma and the theory of smooth numbers.

Thu, 13 Feb 2014

16:00 - 17:00
L3

Quasi-solution approach towards nonlinear problems

Saleh Tanveer
(The Ohio State University)
Abstract

Strongly nonlinear problems, written abstractly in the form N[u]=0, are typically difficult to analyze unless they possess special properties. However, if we are able to find a quasi-solution u_0 in the sense that the residual N[u_0] := R is small, then it is possible to analyze a strongly nonlinear problem with weakly nonlinear analysis in the following manner: We decompose u=u_0 + E; then E satisfies L E = -N_1 [E] - R, where L is the Fre'chet derivative of the operator N and N_1 [E] := N[u_0+E]-N[u_0]-L E contains all the nonlinearity. If L has a suitable inversion property and the nonlinearity N_1 is sufficiently regular in E, then weakly nonlinear analysis of the error E through contraction mapping theorem gives rise to control of the error E. What is described above is quite routine. The only new element is to determine a quasi-solution u_0, which is typically found through a combination of classic orthogonal polynomial representation and exponential asymptotics.

This method has been used in a number of nonlinear ODEs arising from reduction of PDEs. We also show how it can be extended to integro-differential equations that arise in study of deep water waves of permanent form. The method is quite general and can in principle be applied to nonlinear PDEs as well.

NB. Much of this is joint work with O. Costin and other collaborators.

Thu, 13 Feb 2014

16:00 - 17:30
L2

Market models with optimal arbitrage

Peter Tankov
(Paris 7)
Abstract

We construct and study market models admitting optimal arbitrage. We say that a model admits optimal arbitrage if it is possible, in a zero-interest rate setting, starting with an initial wealth of 1 and using only positive portfolios, to superreplicate a constant c>1. The optimal arbitrage strategy is the strategy for which this constant has the highest possible value. Our definition of optimal arbitrage is similar to the one in Fenrholz and Karatzas (2010), where optimal relative arbitrage with respect to the market portfolio is studied. In this work we present a systematic method to construct market models where the optimal arbitrage strategy exists and is known explicitly. We then develop several new examples of market models with arbitrage, which are based on economic agents' views concerning the impossibility of certain events rather than ad hoc constructions. We also explore the concept of fragility of arbitrage introduced in Guasoni and Rasonyi (2012), and provide new examples of arbitrage models which are not fragile in this sense.

References:

Fernholz, D. and Karatzas, I. (2010). On optimal arbitrage. The Annals of Applied Probability, 20(4):1179–1204.

Guasoni, P. and Rasonyi, M. (2012). Fragility of arbitrage and bubbles in diffusion models. preprint.

Thu, 13 Feb 2014

14:45 - 15:45
L4

Crossed simplicial groups and invariants of structured surfaces

Tobias Dyckerhoff
(University of Oxford)
Abstract

Crossed simplicial groups were introduced independently by Krasauskas and Fiedorowicz-Loday as analogues of Connes' cyclic category. In this talk, I will explain a new perspective on a certain class of crossed simplicial groups, relating them to structured surfaces. This provides a combinatorial approach to categorical invariants of surfaces which leads to known, expected, and new examples. (Based on joint work with Mikhail Kapranov.)

Thu, 13 Feb 2014

14:00 - 15:00
L5

Finite element approximation of a quasi-static model of rock detachment

Dr Leonardo Figueroa
(Universidad de Concepción)
Abstract

We report on a numerical implementation of a quasi-static model of

rock detachment based on Allaire, Jouve and Van Goethem's

implementation of Francfort and Marigo's model of damage in brittle

solids, As such, local minimizers of a cost functional involving both

stored elastic energy and a damage penalization term are sought by

using a procedure which alternates between approximately solving a

linear elasticity system and advancing a transport equation for a

level set function describing the loci of still-attached rock. We pay

special attention to the mixed finite element method used in the

approximation of the linear elasticity system.

Thu, 13 Feb 2014

12:00 - 13:00
L6

Modelling collective motion in biology

Prof. Philip Maini
(University of Oxford)
Abstract

We will present three different recent applications of cell motion in biology: (i) Movement of epithelial sheets and rosette formation, (ii) neural crest cell migrations, (iii) acid-mediated cancer cell invasion. While the talk will focus primarily on the biological application, it will be shown that all of these processes can be represented by reaction-diffusion equations with nonlinear diffusion term.

Wed, 12 Feb 2014

16:00 - 17:00
C6

Automatic Groups

Giles Gardam
(Oxford)
Abstract

The notion of automatic groups emerged from conversations between Bill Thurston and Jim Cannon on the nice algorithmic properties of Kleinian groups. In this introductory talk we will define automatic groups and then discuss why they are interesting. This centres on how automatic groups subsume many other classes of groups (e.g. hyperbolic groups, finitely generated Coxeter groups, and braid groups) and have good properties (e.g. finite presentability, fast solution to the word problem, and type FP).

Wed, 12 Feb 2014
10:30
N3.12

Groups whose word problem is context-free

Giles Gardam
Abstract

We will introduce some necessary basic notions regarding formal languages, before proceeding to give the classification of groups whose word problem is context-free as the virtually free groups (due to Muller and Schupp (1983) together with Dunwoody's accessibility of finitely presented groups (1985) for full generality). Emphasis will be on the group theoretic aspects of the proof, such as Stalling's theorem on ends of groups, accessibility, and geometry of the Cayley graph (rather than emphasizing details of formal languages).

Tue, 11 Feb 2014

15:45 - 16:45
L4

Symplectic cohomology and circle-actions

Alexander Ritter
(Oxford)
Abstract

I will explain how to compute the symplectic cohomology of a manifold $M$ conical at infinity, whose Reeb flow at infinity arises from a Hamiltonian circle-action on $M$. For example, this allows one to compute the symplectic cohomology of negative line bundles in terms of the quantum cohomology, and (in joint work with Ivan Smith) via the open-closed string map one can determine the wrapped Fukaya category of negative line bundles over projective space. In this talk, I will show that one can explicitly compute the quantum cohomology and symplectic cohomology of Fano toric negative line bundles, which are in fact different cohomology groups, and surprisingly it is actually the symplectic cohomology which recovers the Jacobian ring of the Landau-Ginzburg superpotential.

Tue, 11 Feb 2014

14:30 - 15:30
L6

Frankl-Rödl type theorems for codes and permutations

Eoin Long
(University of Oxford)
Abstract

We give a new proof of the Frankl-Rödl theorem on set systems with a forbidden intersection. Our method extends to codes with forbidden distances, where over large alphabets our bound is significantly better than that obtained by Frankl and Rödl. One consequence of our result is a Frankl-Rödl type theorem for permutations with a forbidden distance. Joint work with Peter Keevash.

Tue, 11 Feb 2014

14:30 - 15:00
L5

Community Structure in Multilayer Networks

Mason Alexander Porter
(University of Oxford)
Abstract

Networks arise pervasively in biology, physics, technology, social science, and myriad other areas. An ordinary network consists of a collection of entities (called nodes) that interact via edges. "Multilayer networks" are a more general representation that can be used when nodes are connected to each other via multiple types of edges or a network changes in time.  In this talk, I will discuss how to find dense sets of nodes called "communities" in multilayer networks and some applications of community structure to problems in neuroscience and finance.

Tue, 11 Feb 2014

14:00 - 14:30
L5

Fun with Sobolev spaces on fractal domains

David Hewett
(University of Oxford)
Abstract

Sobolev spaces are the standard framework in which to analyse weak (variational) formulations of PDEs or integral equations and their numerical solution (e.g. using the Finite Element Method or the Boundary Element Method). There are many different ways to define Sobolev spaces on a given domain, for example via integrability of weak derivatives, completions of spaces of smooth functions with respect to certain norms, or restriction from spaces defined on a larger domain. For smooth (e.g. Lipschitz) domains things many of these definitions coincide. But on rough (e.g. fractal) domains the picture is much more complicated. In this talk I'll try to give a flavour of the sort of interesting behaviour that can arise, and what implications this behaviour has for a "practical" example, namely acoustic wave scattering by fractal screens. 

Tue, 11 Feb 2014

14:00 - 15:00
L4

Uniqueness Theorems for Smoothing Special Lagrangians

Yohsuke Imagi
(Kyoto)
Abstract

Special Lagranigian submanifolds are area-minimizing Lagrangian submanifolds of Calabi--Yau manifolds. One can define the moduli space of compact special Lagrangian submanifolds of a (fixed) Calabi--Yau manifold. Mclean proves it has a structure of manifold (of dimension finite). It isn't compact in general, but one can compactify it by using geometric measure theory.

Kontsevich conjectured a mirror symmetry, and special Lagrangians should be "mirror" to holomorphic vector bundles. By using algebraic geometry one can compactify the moduli space of holomorphic vector bundles. By "counting" holomorphic vector bundles in Calabi--Yau 3-folds Richard Thomas defined holomorphic Casson invariants (Donaldson-Thomas invariants).

So far as I know it's an open question (probably very difficult) whether one can "count" special Lagrangians, or define a nice structure on the (compactified) moduli space of special Lagrangians.

To do it one has to study singularities of special Lagrangians.

One can smooth singularities in suitable situations: given a singular special Lagrangian, one can construct smooth special Lagrangians tending to it (by the gluing technique). I've proved a uniqueness theorem in a "symmetric" situation: given a symmetric singularity, there's only one way to smooth it (the point of the proof is that the symmetry reduces the problem to an ordinary differential equation).

More recently I've studied a non-symmetric situation together with Dominic Joyce and Joana Oliveira dos Santos Amorim. Our method is based on Lagrangian Floer theory, and is effective at least for pairs of two (special) Lagrangian planes intersecting transversely.

I'll give the details in the talk.

Mon, 10 Feb 2014

17:00 - 18:00
L6

On regularity properties of solutions to hysteresis-type problems

Nina Uraltseva
(St Petersburg State University)
Abstract

We consider equations with the simplest hysteresis operator at

the right-hand side. Such equations describe the so-called processes "with

memory" in which various substances interact according to the hysteresis

law. The main feature of this problem is that the operator at the

right-hand side is a multivalued.

We present some results concerning the optimal regularity of solutions.

Our arguments are based on quadratic growth estimates for solutions near

the free boundary. The talk is based on joint work with Darya

Apushkinskaya.

Mon, 10 Feb 2014

16:00 - 17:00
C5

Diophantine Properties of Nilpotent Lie Groups

Henry Bradford
(Oxford University)
Abstract

A finite set of elements in a connected real Lie group is "Diophantine" if non-identity short words in the set all lie far away from the identity. It has long been understood that in abelian groups, such sets are abundant. In this talk I will discuss recent work of Aka; Breuillard; Rosenzweig and de Saxce concerning this phenomenon (and its limitations) in the more general setting of nilpotent groups. 

Mon, 10 Feb 2014

15:30 - 16:30

Dynamics on some infinite translation surfaces

Corinna Ulcigrai
(Bristol)
Abstract

We will consider infinite translation surfaces which are abelian covers of

compact surfaces with a (singular) flat metric and focus on the dynamical

properties of their flat geodesics. A motivation come from mathematical

physics, since flat geodesics on these surfaces can be obtained by unfolding

certain mathematical billiards. A notable example of such billiards is  the

Ehrenfest model, which consists of a particle bouncing off the walls of a

periodic planar array of rectangular scatterers.

The dynamics of flat geodesics on compact translation surfaces is now well

understood thanks to the beautiful connection with Teichmueller dynamics. We

will survey some recent advances on the study of infinite translation

surfaces and in particular focus on a joint work with K. Fraczek,  in which

we proved that the Ehrenfest model and more in general geodesic flows on

certain abelain covers have no dense orbits. We will try to convey an

heuristic idea of how Teichmueller dynamics plays a crucial role in the

proofs.