14:00
Generalised metrisable spaces and the normal Moore space conjecture
Abstract
We will introduce a few class of generalised metrisable
properties; that is, properties that hold of all metrisable spaces that
can be used to generalise results and are in some sense 'close' to
metrisability. In particular, we will discuss Moore spaces and the
independence of the normal Moore space conjecture - Is every normal
Moore space metrisable?
On black hole thermodynamics from super Yang-Mills
Abstract
Regularity and singularity of area-minimizing currents
Abstract
The Plateau's problem, named after the Belgian physicist J. Plateau, is a classic in the calculus of variations and regards minimizing the area among all surfaces spanning a given contour. Although Plateau's original concern were $2$-dimensional surfaces in the $3$-dimensional space, generations of mathematicians have considered such problem in its generality. A successful existence theory, that of integral currents, was developed by De Giorgi in the case of hypersurfaces in the fifties and by Federer and Fleming in the general case in the sixties. When dealing with hypersurfaces, the minimizers found in this way are rather regular: the corresponding regularity theory has been the achievement of several mathematicians in the 60es, 70es and 80es (De Giorgi, Fleming, Almgren, Simons, Bombieri, Giusti, Simon among others).
In codimension higher than one, a phenomenon which is absent for hypersurfaces, namely that of branching, causes very serious problems: a famous theorem of Wirtinger and Federer shows that any holomorphic subvariety in $\mathbb C^n$ is indeed an area-minimizing current. A celebrated monograph of Almgren solved the issue at the beginning of the 80es, proving that the singular set of a general area-minimizing (integral) current has (real) codimension at least 2. However, his original (typewritten) manuscript was more than 1700 pages long. In a recent series of works with Emanuele Spadaro we have given a substantially shorter and simpler version of Almgren's theory, building upon large portions of his program but also bringing some new ideas from partial differential equations, metric analysis and metric geometry. In this talk I will try to give a feeling for the difficulties in the proof and how they can be overcome.
CALF: A period map for global derived stacks
Abstract
In the sixties Griffiths constructed a holomorphic map, known as the local period map, which relates the classification of smooth projective varieties to the associated Hodge structures. Fiorenza and Manetti have recently described it in terms of Schlessinger's deformation functors and, together with Martinengo, have started to look at it in the context of Derived Deformation Theory. In this talk we propose a rigorous way to lift such an extended version of Griffiths period map to a morphism of derived deformation functors and use this to construct a period morphism for global derived stacks.
CALF: Universal D-modules
Abstract
A universal D-module of dimension n is a rule assigning to every family of smooth $n$-dimensional varieties a family of D-modules, in a compatible way. This seems like a huge amount of data, but it turns out to be entirely determined by its value over a single formal disc. We begin by recalling (or perhaps introducing) the notion of a D-module, and proceed to define the category $M_n$ of universal D-modules. Following Beilinson and Drinfeld we define the Gelfand-Kazhdan structure over a smooth variety (or family of varieties) of dimension $n$, and use it to build examples of universal D-modules and to exhibit a correspondence between $M_n$ and the category of modules over the group-scheme of continuous automorphisms of formal power series in $n$ variables
Volcanic ash in sediment sequences: a precise tool for dating the past?
CALF: Semi-ampleness of line bundles in positive characteristic
Time reversal, n-marginal Root embedding and its optimal stopping interpretation
Abstract
I explore some new ideas on embedding problems for Brownian motion (and other Markov processes). I show how a (forward) Skorokhod embedding problem is transformed into an optimal stopping problem for the time-reversed process (Markov process in duality). This is deduced from the PDE (Variational Inequalities) interpretation of the classical results but then shown using probabilistic techniques and extended to give an n-marginal Root embedding. I also discuss briefly how to extend the approach to other embeddings such as the Azema-Yor embedding.
Use of truth in logic
Abstract
Formal truth theory sits between mathematical logic and philosophy. In this talk, I will try to give a partial overview of formal truth theory, from my particular perspective and research, in connection to some areas of mathematical logic.
Beilinson-Bernstein Localization Theorem
Abstract
We will talk about the Beilinson-Bernstein localization theorem, which is a major result in geometric representation theory. We will try to explain the main ideas behind the theorem and this will lead us to some geometric constructions that are used in order to produce representations. Finally we will see how the theorem is demonstrated in the specific case of the Lie algebra sl2
Problems in free boundary Hele-Shaw and Stokes flows
Abstract
Two-dimensional viscous fluid flow problems come about either because of a thin gap geometry (Hele-Shaw flow) or plane symmetry (Stokes flow). Such problems can also involve free boundaries between different fluids, and much has been achieved in this area, including by many at Oxford. In this seminar I will discuss some new results in this field.
Firstly I will talk about some of the results of my PhD on contracting inviscid bubbles in Hele-Shaw flow, in particular regarding the effects of surface tension and kinetic undercooling on the free boundary. When a bubble contracts to a point, these effects are dominant, and lead to a menagerie of possible extinction shapes. This limiting problem is a generalisation of the curve shortening flow equation from the study of geometric PDEs. We are currently exploring properties of this generalised flow rule.
Secondly I will discuss current work on applying a free boundary Stokes flow model to the evolution of subglacial water channels. These channels are maintained by the balance between inward creep of ice and melting due to the flow of water. While these channels are normally modelled as circular or semicircular in cross-section, the inward creep of a viscous fluid is unstable. We look at some simplistic viscous dissipation models and the effect they have on the stability of the channel shape. Ultimately, a more realistic turbulent flow model is needed to understand the morphology of the channel walls.
Coherence and elicitability
Abstract
The risk of a financial position is usually summarized by a risk measure.
As this risk measure has to be estimated from historical data, it is important to be able to verify and compare competing estimation procedures. In
statistical decision theory, risk measures for which such verification and comparison is possible, are called elicitable. It is known that quantile based risk
measures such as value-at-risk are elicitable. However, the coherent risk measure expected shortfall is not elicitable. Hence, it is unclear how to perform
forecast verification or comparison. We address the question whether coherent and elicitable risk measures exist (other than minus the expected value).
We show that one positive answer are expectiles, and that they play a special role amongst all elicitable law-invariant coherent risk measures.
Alternating minimal energy methods for linear systems in higher dimensions
Abstract
When high-dimensional
problems are concerned, not much algorithms can break the curse of
dimensionality, and solve them efficiently and reliably. Among those, tensor
product algorithms, which implement the idea of separation of variables for
multi-index arrays (tensors), seem to be the most general and also very
promising. They originated in quantum physics and chemistry and descent broadly
from the density matrix renormalization group (DMRG) and matrix
product states (MPS) formalisms. The same tensor formats were recently
re-discovered in the numerical linear algebra (NLA) community as the tensor
train (TT) format.
Algorithms developed in the quantum physics community are based on the
optimisation in tensor formats, that is performed subsequently for all
components of a tensor format (i.e. all sites or modes).
The DMRG/MPS schemes are very efficient but very difficult to analyse, and at
the moment only local convergence results for the simplest algorithm are
available. In the NLA community, a common approach is to use a classical
iterative scheme (e.g. GMRES) and enforce the compression to a tensor format at
every step. The formal analysis is quite straightforward, but tensor ranks of
the vectors which span the Krylov subspace grow rapidly with iterations, and
the methods are struggling in practice.
The first attempt to merge classical iterative algorithms and DMRG/MPS methods
was made by White (2005), where the second Krylov vector is used to expand the
search space on the optimisation step.
The idea proved to be useful, but the implementation was based on the fair
amount of physical intuition, and the algorithm is not completely justified.
We have recently proposed the AMEn algorithm for linear systems, that also
injects the gradient direction in the optimisation step, but in a way that
allows to prove the global convergence of the resulted scheme. The
scheme can be easily applied for the computation of the ground state --- the
differences to the algorithm of S. White are emphasized in Dolgov and
Savostyanov (2013).
The AMEn scheme is already acknowledged in the NLA community --- for example it
was recently applied for the computation of extreme eigenstates by Kressner,
Steinlechner and Uschmajew (2013), using the block-TT format proposed by in
Dolgov, Khoromskij, Oseledets and Savostyanov (2014).
At the moment, AMEn algorithm was applied
- to simulate the NMR spectra of large molecules (such as ubiquitin),
- to solve the Fokker-Planck equation for the non-Newtonian polymeric
flows,
- to the chemical master equation describing the mesoscopic model of gene
regulative networks,
- to solve the Heisenberg model problem for a periodic spin chain.
We aim to extend this framework and the analysis to other problems of NLA:
eigenproblems, time-dependent problems, high-dimensional interpolation, and
matrix functions; as well as to a wider list of high-dimensional
problems.
This is a joint work with Sergey Dolgov the from Max-Planck Institute for
Mathematics in the Sciences, Leipzig, Germany.
The rigidity problem for symmetrization inequalities
Abstract
Steiner symmetrization is a very useful tool in the study of isoperimetric inequality. This is also due to the fact that the perimeter of a set is less or equal than the perimeter of its Steiner symmetral. In the same way, in the Gaussian setting,
it is well known that Ehrhard symmetrization does not increase the Gaussian perimeter. We will show characterization results for equality cases in both Steiner and Ehrhard perimeter inequalities. We will also characterize rigidity of equality cases. By rigidity, we mean the situation when all equality cases are trivially obtained by a translation of the Steiner symmetral (or, in the Gaussian setting, by a reflection of the Ehrhard symmetral). We will achieve this through the introduction of a suitable measure-theoretic notion of connectedness, and through a fine analysis of the barycenter function
for a special class of sets. These results are obtained in collaboration with Maria Colombo, Guido De Philippis, and Francesco Maggi.
11:00
'Counterexamples to a conjecture of Wilkie'
Abstract
In an o-minimal expansion of the real field, while few holomorphic functions are globally definable, many may be locally definable. Wilkie conjectured that a few basic operations suffice to obtain all of them from the basic functions in the language, and proved the conjecture at generic points. However, it is false in general. Using Ax's theorem, I will explain one counterexample. However, this is not the end of the story.
This is joint work with Jones and Servi.
Volumes of representations of 3-manifold groups.
Abstract
In some of their recent work Derbez and Wang studied volumes of representations of 3-manifold groups into the Lie groups $$Iso_e \widetilde{SL_2(\mathbb{R})} \mbox{ and }PSL(2,\mathbb{C}).$$ They computed the set of all volumes of representations for a fixed prime closed oriented 3-manifold with $$\widetilde{SL_2(\mathbb{R})}\mbox{-geometry}$$ and used this result to compute some volumes of Graph manifolds after passing to finite coverings.
In the talk I will give a brief introduction to the theory of volumes of representations and state some of Derbez' and Wang's results. Then I will prove an additivity formula for volumes of representations into $$Iso_e \widetilde{SL_2(\mathbb{R})}$$ which enables us to improve some of the results of Derbez and Wang.
14:30
Point versus set topology: constructing examples by splitting points
Abstract
The main result is to give a separable, Cech-complete, 0-dimensional Moore space that is not Scott-domain representable. This result answered questions in the literature; it is known that each complete mertrisable space is Scott-domain representable. The talk will give a history of the techniques involved.
Orbit Decidability and the Conjugacy Problem in Groups
Abstract
We define the notion of orbit decidability in a general context, and descend to the case of groups to recognise it into several classical algorithmic problems. Then we shall go into the realm of free groups and shall analise this notion there, where it is related to the Whitehead problem (with many variations). After this, we shall enter the negative side finding interesting subgroups which are orbit undecidable. Finally, we shall prove a theorem connecting orbit decidability with the conjugacy problem for extensions of groups, and will derive several (positive and negative) applications to the conjugacy problem for groups.
17:00