Tue, 22 Oct 2013

14:00 - 15:00
L4

Noncommutative algebraic geometry of isolated hypersurface singularities I

Toby Dyckerhoff
(Oxford)
Abstract

The concept of a matrix factorization was originally introduced by Eisenbud to study syzygies over local rings of singular hypersurfaces. More recently, interactions with mathematical physics, where matrix factorizations appear in quantum field theory, have provided various new insights. I will explain how matrix factorizations can be studied in the context of noncommutative algebraic geometry based on differential graded categories. We will see the relevance of the noncommutative analogue of de Rham cohomology in terms of classical singularity theory. Finally, I will outline how the Kapustin-Li formula for the noncommutative Serre duality pairing (originally computed via path integral methods) can be mathematically explained using a combination of homological perturbation theory and local duality.
Partly based on joint work with Daniel Murfet.

Tue, 22 Oct 2013

14:00 - 14:30
L5

Existence and numerical analysis for incompressible chemically reacting fluids with $p(c(x))$-$\Delta$ structure

Petra Pustejovska
(Graz University of Technology)
Abstract

We study a system of partial differential equations describing a steady flow of an incompressible generalized Newtonian fluid, wherein the Cauchy stress depends on concentration. Namely, we consider a coupled system of the generalized Navier-Stokes equations (viscosity of power-law type with concentration dependent power index) and convection-diffusion equation with non-linear diffusivity. We focus on the existence analysis of a weak solution for certain class of models by using a generalization of the monotone operator theory which fits into the framework of generalized Sobolev spaces with variable exponent (class of Sobolev-Orlicz spaces). Such results is then adapted for a suitable FEM approximation, for which the main tool of proof is a generalization of the Lipschitz approximation method.

Tue, 22 Oct 2013

13:00 - 14:00
C4

Singularly perturbed hyperbolic systems

Stuart Thomson
(OCIAM, Oxford)
Abstract

In the first JAM seminar of 2013/2014, I will discuss the topic of singular perturbed hyperbolic systems of PDE arising in physical phenomena, particularly the St Venant equations of shallow water theory. Using a mixture of analytical and numerical techniques, I will demonstrate the dangers of approximating the dynamics of a system by the equations obtained upon taking a singular limit $\epsilon\rightarrow 0$ and furthermore how the dynamics of the system change when the parameter $\epsilon$ is taken to be small but finite. Problems of this type are ubiquitous in the physical sciences, and I intend to motivate another example arising in elastoplasticity, the subject of my DPhil study.

\\

\\

Note: This seminar is not intended for faculty members, and is available only to current undergraduate and graduate students.

Mon, 21 Oct 2013

17:00 - 18:00
C5

Finding Galois Representations

Ben Green
Abstract

It is well known that one can attach Galois representations to certain modular forms, it is natural to ask how one might generalise this to produce more Galois representations. One such approach, due to Gross, defines objects called algebraic modular forms on certain types of reductive groups and then conjectures the existence of Galois representations attached to them. In this talk I will outline how for a particular choice of reductive group the conjectured Galois representations exist and are the classical modular Galois representations, thus providing some evidence that this is a good generalisation to consider.

Mon, 21 Oct 2013

17:00 - 18:00
L6

Local minimization, Variational evolution and Gamma-convergence

Andrea Braides
(University of Rome `Tor Vergata')
Abstract

The description of the behaviour of local minima or evolution problems for families of energies cannot in general be deduced from their Gamma-limit, which is a concept designed to treat static global minimum problems. Nevertheless this can be taken as a starting point. Various issues that have been addressed are:

Find criteria that ensure the convergence of local minimizers and critical points. In case this does not occur then modify the Gamma-limit in order to match this requirement. We note that in this way we `correct' some limit theories, finding (or `validating') other ones present in the literature;

Modify the concept of local minimizer, so that it may be more `compatible' with the process of Gamma-limit;

Treat evolution problems for energies with many local minima obtained by a time-discrete scheme introducing the notion of `minimizing movements along a sequence of functionals'. In this case the minimizing movement of the Gamma-limit can always be obtained by a choice of the space- and time-scale, but more interesting behaviors can be obtained at a critical ratio between them. In many cases a `critical scale' can be computed and an effective motion, from which all other minimizing movements are obtained by scaling.

Relate minimizing movements to general variational evolution results, in particular recent theories of quasistatic motion and gradient flow in metric spaces.

I will illustrate some of these points.

Mon, 21 Oct 2013

15:45 - 16:45
Oxford-Man Institute

Learning an evolving system using Rough Paths Theory

Ni Hao
(University of Oxford)
Abstract

''Regression analysis aims to use observational data from multiple observations to develop a functional relationship relating explanatory variables to response variables, which is important for much of modern statistics, and econometrics, and also the field of machine learning. In this paper, we consider the special case where the explanatory variable is a stream of information, and the response is also potentially a stream. We provide an approach based on identifying carefully chosen features of the stream which allows linear regression to be used to characterise the functional relationship between explanatory variables and the conditional distribution of the response; the methods used to develop and justify this approach, such as the signature of a stream and the shue product of tensors, are standard tools in the theory of rough paths and seem appropriate in this context of regression as well and provide a surprisingly unified and non-parametric approach.''

Mon, 21 Oct 2013

14:15 - 15:15
Oxford-Man Institute

Asymptotic independence of three statistics of the maximal increments of random walks and Levy processes

Aleksandar Mijatovic
(Imperial College London)
Abstract
Abstract: Let $H(x) = \inf\{n:\, \exists\, k x\}$ be the first epoch that an increment of the size larger than $x>0$ of a random walk $S$ occurs and consider the path functionals: $$ R_n = \max_{m\in\{0, \ldots, n\}}\{S_{n} - S_m\}, R_n^* = \max_{m,k\in\{0, \ldots, n\}, m\leq k} \{S_{k}-S_m\} \text{and} O_x=R_{H(x)}-x.$$ The main result states that, under Cram\'{e}r's condition on the step-size distribution of $S$, the statistics $R_n$, $R_n^* -y$ and $O_{x+y}$ are asymptotically independent as $\min\{n,y,x\}\uparrow\infty$. Furthermore, we establish a novel Spitzer-type identity characterising the limit law $O_\infty$ in terms of the one-dimensional marginals of $S$. If $y=\gamma^{-1}\log n$, where $\gamma$ is the Cram\'er coefficient, our results together with the classical theorem of Iglehart (1972) imply the existence of a joint weak limit of the three statistics and identify its law. As corollary we obtain a new factorization of the exponential distribution as a convolution of the asymptotic overshoot $O_\infty$ and the stationary distribution of the reflected random walk $R$. We prove analogous results for the corresponding statistics of a L\'{e}vy process. This is joint work with M. Pistorius.
Mon, 21 Oct 2013

12:00 - 13:00
L5

Integrability and instability in AdS/CFT

Ryo Suzuki
(Oxford)
Abstract
The energy of an open string ending on giant-graviton branes in the AdS_5xS^5 spacetime is equal to the dimension of determinant-like operators in N=4 super Yang-Mills, according to AdS/CFT. We investigate this correspondence under a brane-antibrane setup by using gauge theory and integrability methods, and propose Boundary TBA equations to compute the exact dimensions of the determinant-like operators at any coupling. By solving the Boundary TBA numerically, we found a divergence of the exact energies at a finite value of the 't Hooft coupling constant, implying that string states are tachyonic at strong coupling. In this talk I would like to explain the origin of singularity after briefly reviewing the application of integrability methods to AdS/CFT.
Fri, 18 Oct 2013

16:00 - 17:00
L4

Closed End Bond Funds

Phelim Boyle
(Wilfrid Laurier)
Abstract

The performance of the shares of a closed end bond fund is based on the returns of an underlying portfolio of bonds. The returns on closed end bond funds are typically higher than those of comparable open ended bond funds and this result is attributed to the use of leverage by closed end bond funds. This talk develops a simple model to assess the impact of leverage on the expected return and riskiness of a closed end bond fund. We illustrate the model with some examples

Fri, 18 Oct 2013

15:50 - 16:50
L3

Periodicity of finite-dimensional algebras

Andrzej Skowronski
(Torun)
Abstract

Let $A$ be a finite-dimensional $K$-algebra over an algebraically closed field $K$. Denote by $\Omega_A$ the syzygy operator on the category $\mod A$ of finite-dimensional right $A$-modules, which assigns to a module $M$ in $\mod A$ the kernel $\Omega_A(M)$ of a minimal projective cover $P_A(M) \to M$ of $M$ in $\mod A$. A module $M$ in $\mod A$ is said to be periodic if $\Omega_A^n(M) \cong M$ for some $n \geq 1$. Then $A$ is said to be a periodic algebra if $A$ is periodic in the module category $\mod A^e$ of the enveloping algebra $A^e = A^{\op} \otimes_K A$. The periodic algebras $A$ are self-injective and their module categories $\mod A$ are periodic (all modules in $\mod A$ without projective direct summands are periodic). The periodicity of an algebra $A$ is related with periodicity of its Hochschild cohomology algebra $HH^{*}(A)$ and is invariant under equivalences of the derived categories $D^b(\mod A)$ of bounded complexes over $\mod A$. One of the exciting open problems in the representation theory of self-injective algebras is to determine the Morita equivalence classes of periodic algebras.

We will present the current stage of the solution of this problem and exhibit prominent classes of periodic algebras.

Fri, 18 Oct 2013

14:00 - 15:00
L3

On symmetric quotients of symmetric algebras

Radha Kessar
(City University London)
Abstract

We investigate symmetric quotient algebras of symmetric algebras,

with an emphasis on finite group algebras over a complete discrete

valuation ring R with residue field of positive characteristic p. Using elementary methods, we show that if an

ordinary irreducible character of a finite group gives

rise to a symmetric quotient over R which is not a matrix algebra,

then the decomposition numbers of the row labelled by the character are

all divisible by p. In a different direction, we show that if is P is a finite

p-group with a cyclic normal subgroup of index p, then every ordinary irreducible character of P gives rise to a

symmetric quotient of RP. This is joint work with Shigeo Koshitani and Markus Linckelmann.

Fri, 18 Oct 2013

14:00 - 15:00
L5

Exact representations of Susceptible-Infectious-Removed (SIR) epidemic dynamics on networks

Dr Kieran Sharkey
(University of Liverpool)
Abstract

The majority of epidemic models fall into two categories: 1) deterministic models represented by differential equations and 2) stochastic models which can be evaluated by simulation. In this presentation I will discuss the precise connection between these models. Until recently, exact correspondence was only established in situations exhibiting large degrees of symmetry or for infinite populations.

I will consider SIR dynamics on finite static contact networks. I will give an overview of two provably exact deterministic representations of the underlying stochastic model for tree-like networks. These are the message passing description of Karrer and Newman and my pair-based moment closure representation. I will discuss relationship between the two representations and the relative merits of both.

Fri, 18 Oct 2013

10:50 - 11:50
L3

Affine cellularity of Khovanov-Lauda-Rouquier algebras in finite type A

Vanessa Miemietz
(UEA Norwich)
Abstract

We explain how Khovanov-Lauda-Rouquier algebras in finite type A are affine cellular in the sense of Koenig and Xi. In particular this reproves finiteness of their global dimension. This is joint work with Alexander Kleshchev and Joseph Loubert.

Fri, 18 Oct 2013

09:30 - 10:30
L3

Examples of support varieties for Hopf algebras with noncommutative tensor products

Dave Benson
(Aberdeen)
Abstract

This talk is about some recent joint work with Sarah Witherspoon. The representations of some finite dimensional Hopf algebras have curious behaviour: Nonprojective modules may have projective tensor powers, and the variety of a tensor product of modules may not be contained in the intersection of their varieties. I shall describe a family of examples of such Hopf algebras and their modules, and the classification of left, right, and two-sided ideals in their stable module categories.

Thu, 17 Oct 2013

17:15 - 18:15
L6

On a question of Abraham Robinson's

Jochen Koenigsmann
(Oxford)
Abstract
We give a negative answer to Abraham Robinson's question whether a finitely generated extension of an undecidable field is always undecidable by constructing undecidable fields of transcendence degree 1 over the rationals all of whose proper finite extensions are decidable. We also construct undecidable algebraic extensions of the rationals which allow decidable finite extensions.
Thu, 17 Oct 2013

16:45 - 17:45
L2

Coxeter groups, path algebras and preprojective algebras

Idun Reiten
(NTNU Trondheim)
Abstract

To a finite connected acyclic quiver Q there is associated a path algebra kQ, for an algebraically closed field k, a Coxeter group W and a preprojective algebra. We discuss a bijection between elements of the Coxeter group W and the cofinite quotient closed subcategories of mod kQ, obtained by using the preprojective algebra. This is taken from a paper with Oppermann and Thomas. We also include a related result by Mizuno in the case when Q is Dynkin.

Thu, 17 Oct 2013

16:00 - 17:30
C6

Quillen's determinant line bundle

Jakob Blaavand
Abstract

In the talk we will discuss Quillen's construction of a determinant line bundle associated to a family of Cauchy-Riemann operators. I will first of all try to convince you why this is a cool thing and mention some of the many different applications. The bulk of the talk will be focused on constructing the line bundle, its hermitian metric and calculating the curvature. Hopefully a talk accessible to many.

Thu, 17 Oct 2013

16:00 - 17:00
L3

Patterns in neural field models

Stephen Coombes
(University of Nottingham)
Abstract

Neural field models describe the coarse-grained activity of populations of

interacting neurons. Because of the laminar structure of real cortical

tissue they are often studied in two spatial dimensions, where they are well

known to generate rich patterns of spatiotemporal activity. Such patterns

have been interpreted in a variety of contexts ranging from the

understanding of visual hallucinations to the generation of

electroencephalographic signals. Typical patterns include localised

solutions in the form of travelling spots, as well as intricate labyrinthine

structures. These patterns are naturally defined by the interface between

low and high states of neural activity. Here we derive the equations of

motion for such interfaces and show, for a Heaviside firing rate, that the

normal velocity of an interface is given in terms of a non-local Biot-Savart

type interaction over the boundaries of the high activity regions. This

exact, but dimensionally reduced, system of equations is solved numerically

and shown to be in excellent agreement with the full nonlinear integral

equation defining the neural field. We develop a linear stability analysis

for the interface dynamics that allows us to understand the mechanisms of

pattern formation that arise from instabilities of spots, rings, stripes and

fronts. We further show how to analyse neural field models with

linear adaptation currents, and determine the conditions for the dynamic

instability of spots that can give rise to breathers and travelling waves.

We end with a discussion of amplitude equations for analysing behaviour in

the vicinity of a bifurcation point (for smooth firing rates). The condition

for a drift instability is derived and a center manifold reduction is used

to describe a slowly moving spot in the vicinity of this bifurcation. This

analysis is extended to cover the case of two slowly moving spots, and

establishes that these will reflect from each other in a head-on collision.

Thu, 17 Oct 2013

15:00 - 16:00
L2

The root posets (and the hereditary abelian categories of Dynkin type)

Claus Ringel
(Bielefeld University)
Abstract

Given a root system, the choice of a root basis divides the set of roots into the positive and the negative ones, it also yields an ordering on the set of positive roots. The set of positive roots with respect to this ordering is called a root poset. The root posets have attracted a lot of interest in the last years. The set of antichains (with a suitable ordering) in a root poset turns out to be a lattice, it is called lattice of (generalized) non-crossing partitions. As Ingalls and Thomas have shown, this lattice is isomorphic to the lattice of thick subcategories of a hereditary abelian category of Dynkin type. The isomorphism can be used in order to provide conceptual proofs of several intriguing counting results for non-crossing partitions.