Mon, 17 Dec 2012

16:30 - 17:30

Astor Lecture: The homotopy groups of spheres

Michael Hopkins
(Harvard University, USA)
Abstract

I will describe the history of the homotopy groups of spheres, and some of the many different roles they have come to play in mathematics.

Fri, 14 Dec 2012
16:00
L3

Some results and questions concerning lattices in totally disconnected groups

Tsachik Gelander
(Jersulem)
Abstract

I'll discuss some results about lattices in totally
disconnected locally compact groups, elaborating on the question:
which classical results for lattices in Lie groups can be extended to
general locally compact groups. For example, in contrast to Borel's
theorem that every simple Lie group admits (many) uniform and
non-uniform lattices, there are totally disconnected simple groups
with no lattices. Another example concerns with the theorem of Mostow
that lattices in connected solvable Lie groups are always uniform.
This theorem cannot be extended for general locally compact groups,
but variants of it hold if one implants sufficient assumptions. At
least 90% of what I intend to say is taken from a paper and an
unpublished preprint written jointly with P.E. Caprace, U. Bader and
S. Mozes. If time allows, I will also discuss some basic properties
and questions regarding Invariant Random Subgroups.

Fri, 14 Dec 2012
14:15
L3

Deformations and rigidity of lattices in soluble Lie groups

Benjamin Klopsch
(RHUL and Magdeburg)
Abstract

Let G be a simply connected, solvable Lie group and Γ a lattice in G. The deformation space D(Γ,G) is the orbit space associated to the action of Aut(G) on the space X(Γ,G) of all lattice embeddings of Γ into G. Our main result generalises the classical rigidity theorems of Mal'tsev and Saitô for lattices in nilpotent Lie groups and in solvable Lie groups of real type. We prove that the deformation space of every Zariski-dense lattice Γ in G is finite and Hausdorff, provided that the maximal nilpotent normal subgroup of G is connected.  I will introduce all necessary notions and try to motivate and explain this result.

Fri, 14 Dec 2012
13:00
L3

Cayley graphs of Fuchsian surface groups versus hyperbolic graphs

Caroline Series
(Warwick)
Abstract

Most results about the Cayley graph of a hyperbolic surface group can be replicated in the context of more general hyperbolic groups. In this talk I will discuss two results about such Cayley graphs which I do not know how to replicate in the more general context.

Fri, 14 Dec 2012

11:30 - 13:00
OCCAM Common Room (RI2.28)

OCCAM Group Meeting

Various
Abstract
  • Victor Burlakov - Understanding the growth of alumina nanofibre arrays
  • Brian Duffy - Measuring visual complexity of cluster-based visualisations
  • Chris Bell - Autologous chemotaxis due to interstitial flow
Thu, 13 Dec 2012

12:00 - 13:00
Gibson 1st Floor SR

Two nonlinear wave equations with conformal invariance

Po Lam Yung
(Rutgers University)
Abstract

In this talk, we will look at two non-linear wave equations in 2+1 dimensions, whose elliptic parts exhibit conformal invariance.

These equations have their origins in prescribing the Gaussian and mean curvatures respectively, and the goal is to understand well-posedness, blow-up and bubbling for these equations.

This is a joint work with Sagun Chanillo.

Thu, 06 Dec 2012

17:00 - 18:00
L3

An application of proof theory to lattice-ordered groups

George Metcalfe
(Bern)
Abstract

(Joint work with Nikolaos Galatos.) Proof-theoretic methods provide useful tools for tackling problems for many classes of algebras. In particular, Gentzen systems admitting cut-elimination may be used to establish decidability, complexity, amalgamation, admissibility, and generation results for classes of residuated lattices corresponding to substructural logics. However, for classes of algebras bearing a family resemblance to groups, such methods have so far met only with limited success. The main aim of this talk will be to explain how proof-theoretic methods can be used to obtain new syntactic proofs of two core theorems for the class of lattice-ordered groups: namely, Holland's result that this class is generated as a variety by the lattice-ordered group of order-preserving automorphisms of the real numbers, and the decidability of the word problem for free lattice-ordered groups.

Mon, 03 Dec 2012
00:00
SR2

Cutting sequences and Bouw-Möller surfaces

Diana Davis
(Brown University)
Abstract

We will start with the square torus, move on to all regular polygons, and then look at a large family of flat surfaces called Bouw-Möller surfaces, made by gluing together many polygons. On each surface, we will consider the action of a certain shearing action on geodesic paths on the surface, and a certain corresponding sequence.

Fri, 30 Nov 2012

16:00 - 17:00
Gibson Grd floor SR

Multillevel Weiner-Hopf Monte Carlo and Euler-Poisson schemes for L\'evy processes

Albert Ferreiro-Castilla
(University of Bath)
Abstract

In Kuznetsov et al. (2011) a new Monte Carlo simulation technique was introduced for a large family of L\'evy processes that is based on the Wiener-Hopf decomposition. We pursue this idea further by combining their technique with the recently introduced multilevel Monte Carlo methodology. We also provide here a theoretical analysis of the new Monte Carlo simulation technique in Kuznetsov et al. (2011) and of its multilevel variant. We find that the rate of convergence is uniformly with respect to the ``jump activity'' (e.g. characterised by the Blumenthal-Getoor index).

Fri, 30 Nov 2012

14:30 - 15:30
DH 3rd floor SR

Constructing plankton ecologies (and the library of Lotka)

Dr John Norbury
(Mathematical Insitute, Oxford)
Abstract

Mesocosm experiments provide a major test bed for models of plankton, greenhouse gas export to the atmosphere, and changes to ocean acidity, nitrogen and oxygen levels. A simple model of a mesocosm plankton ecology is given in terms of a set of explicit natural population dynamics rules that exactly conserve a key nutrient. These rules include many traditional population dynamics models ranging from Lotka-Volterra systems to those with more competitors and more trophic levels coupled by nonlinear processes. The rules allow a definition of an ecospace and an analysis of its behaviour in terms of equilibrium points on the ecospace boundary.

Ecological issues such as extinctions, plankton bloom succession, and system resilience can then be analytically studied. These issues are understood from an alternative view point to the usual search for interior equilibrium points and their classification, coupled with intensive computer simulations. Our approach explains why quadratic mortality usually stabilises large scale simulation, but needs to be considered carefully when developing the next generation of Earth System computer models. The ‘Paradox of the Plankton’ and ‘Invasion Theory’ both have alternative, yet straightforward explanations within these rules.

Thu, 29 Nov 2012

17:00 - 18:00
L3

Valued difference fields and NTP2

Martin Hils
(Paris)
Abstract

(Joint work with Artem Chernikov.) In the talk, we will first recall some basic results on valued difference fields, both from an algebraic and from a model-theoretic point of view. In particular, we will give a description, due to Hrushovski, of the theory VFA of the non-standard Frobenius acting on an algebraically closed valued field of residue characteristic 0, as well as an Ax-Kochen-Ershov type result for certain valued difference fields which was proved by Durhan. We will then present a recent work where it is shown that VFA does not have the tree property of the second kind (i.e., is NTP2); more generally, in the context of the Ax-Kochen-Ershov principle mentioned above, the valued difference field is NTP2 iff both the residue difference field and the value difference group are NTP2. The property NTP2 had already been introduced by Shelah in 1980, but only recently it has been shown to provide a fruitful ‘tameness’ assumption, e.g. when dealing with independence notions in unstable NIP theories (work of Chernikov-Kaplan).

Thu, 29 Nov 2012

16:00 - 17:00
Gibson Grd floor SR

Composition law of periodic orbits in discrete dynamical systems

Jesús San Martin
(Universidad Politécnica de Madrid)
Abstract

The periodic orbits of a discrete dynamical system can be described as

permutations. We derive the composition law for such permutations. When

the composition law is given in matrix form the composition of

different periodic orbits becomes remarkably simple. Composition of

orbits in bifurcation diagrams and decomposition law of composed orbits

follow directly from that matrix representation.

Thu, 29 Nov 2012

15:00 - 16:00
SR1

Hamiltonian evolution of half-flat SU(3) structures

Thomas Madsen
(King's College London)
Abstract

This talk surveys the well known relationship between half-flat SU(3) structures on 6-manifolds M and metrics with holonomy in G_2 on Mx(a,b), focusing on the case in which M=S3xS3 with solutions invariant by SO(4).

Thu, 29 Nov 2012

14:00 - 15:00
L3

Borcherds-Kac-Moody algebras and Langlands interpolation

Alexandre Bouayad
Abstract

We introduce a deformation process of universal enveloping algebras of Borcherds-Kac-Moody algebras, which generalises quantum groups' one and yields a large class of new algebras called coloured Borcherds-Kac-Moody algebras. The direction of deformation is specified by the choice of a collection of numbers. For example, the natural numbers lead to classical enveloping algebras, while the quantum numbers lead to quantum groups. We prove, in the finite type case, that every coloured BKM algebra have representations which deform representations of semisimple Lie algebras and whose characters are given by the Weyl formula. We prove, in the finite type case, that representations of two isogenic coloured BKM algebras can be interpolated by representations of a third coloured BKM algebra. In particular, we solve conjectures of Frenkel-Hernandez about the Langland duality between representations of quantum groups. We also establish a Langlands duality between representations of classical BKM algebras, extending results of Littelmann and McGerty, and we interpret this duality in terms of quantum interpolation.

Thu, 29 Nov 2012

14:00 - 15:00
Gibson Grd floor SR

A locally adaptive Cartesian finite-volume framework for solving PDEs on surfaces

Dr Donna Calhoun
(Boise State University)
Abstract

We describe our current efforts to develop finite volume

schemes for solving PDEs on logically Cartesian locally adapted

surfaces meshes. Our methods require an underlying smooth or

piecewise smooth grid transformation from a Cartesian computational

space to 3d surface meshes, but does not rely on analytic metric terms

to obtain second order accuracy. Our hyperbolic solvers are based on

Clawpack (R. J. LeVeque) and the parabolic solvers are based on a

diamond-cell approach (Y. Coudi\`ere, T. Gallou\"et, R. Herbin et

al). If time permits, I will also discuss Discrete Duality Finite

Volume methods for solving elliptic PDEs on surfaces.

\\

\\

To do local adaption and time subcycling in regions requiring high

spatial resolution, we are developing ForestClaw, a hybrid adaptive

mesh refinement (AMR) code in which non-overlapping fixed-size

Cartesian grids are stored as leaves in a forest of quad- or

oct-trees. The tree-based code p4est (C. Burstedde) manages the

multi-block connectivity and is highly scalable in realistic

applications.

\\

\\

I will present results from reaction-diffusion systems on surface

meshes, and test problems from the atmospheric sciences community.

Thu, 29 Nov 2012

13:00 - 15:00
DH 1st floor SR

How local is a local martingale diffusion?

Martin Klimmek
Abstract

Our starting point is a recent characterisation of one-dimensional, time-homogeneous diffusion in terms of its distribution at an exponential time. The structure of this characterisation leads naturally to the idea of measuring `how far' a diffusion is away from being a martingale diffusion in terms of expected local time at the starting point. This work in progress has a connection to finance and to

a Skorokhod embedding.

Wed, 28 Nov 2012

16:00 - 17:00
SR2

Engulfed subgroups of discrete groups

Will Cavendish
(University of Oxford)
Abstract

A subgroup $H$ of a group $G$ is said to be engulfed if there is a
finite-index subgroup $K$ other than $G$ itself such that $H<K$, or
equivalently if $H$ is not dense in the profinite topology on $G$.  In
this talk I will present a variety of methods for showing that a
subgroup of a discrete group is engulfed, and demonstrate how these
methods can be used to study finite-sheeted covering spaces of
topological spaces.

Tue, 27 Nov 2012

17:00 - 18:00
Gibson 1st Floor SR

Relaxation of a Generalized Willmore Functional

Simon Masnou
(Universit&eacute; Lyon 1)
Abstract

Several shape optimization problems, e.g. in image processing, biology, or discrete geometry, involve the Willmore functional, which is for a surface the integrated squared mean curvature. Due to its singularity, minimizing this functional under constraints is a delicate issue. More precisely, it is difficult to characterize precisely the structure of the minimizers and to provide an explicit

formulation of their energy. In a joint work with Giacomo Nardi (Paris-Dauphine), we have studied an "integrated" version of the Willmore functional, i.e. a version defined for functions and not only for sets. In this talk, I will describe the tools, based on Young measures and varifolds, that we have introduced to address the relaxation issue. I will also discuss some connections with the phase-field numerical approximation of the Willmore flow, that we have investigated with Elie Bretin (Lyon) and Edouard Oudet (Grenoble).

Tue, 27 Nov 2012
17:00
L2

'Orbit coherence in permutation groups'

Mark Wildon
(Royal Holloway)
Abstract

Let G be a permutation group acting on a set Omega. For g in G, let pi(g) denote the partition of Omega given by the orbits of g. The set of all partitions of Omega is naturally ordered by refinement and admits lattice operations of meet and join. My talk concerns the groups G such that the partitions pi(g) for g in G form a sublattice. This condition is highly restrictive, but there are still many interesting examples. These include centralisers in the symmetric group Sym(Omega) and a class of profinite abelian groups which act on each of their orbits as a subgroup of the Prüfer group. I will also describe a classification of the primitive permutation groups of finite degree whose set of orbit partitions is closed under taking joins, but not necessarily meets.

This talk is on joint work with John R. Britnell (Imperial College).