Mon, 21 May 2012

15:45 - 16:45
Oxford-Man Institute

Extrapolation methods for weak approximation schemes

DEJAN VELUSCEK
(ETH Zurich)
Abstract

We will give a quick overview of the semigroup perspective on splitting schemes for S(P)DEs which present a robust, "easy to implement" numerical method for calculating the expected value of a certain payoff of a stochastic process driven by a S(P)DE. Having a high numerical order of convergence enables us to replace the Monte Carlo integration technique by alternative, faster techniques. The numerical order of splitting schemes for S(P)DEs is bounded by 2. The technique of combining several splittings using linear combinations which kills some additional terms in the error expansion and thus raises the order of the numerical method is called the extrapolation. In the presentation we will focus on a special extrapolation of the Lie-Trotter splitting: the symmetrically weighted sequential splitting, and its subsequent extrapolations. Using the semigroup technique their convergence will be investigated. At the end several applications to the S(P)DEs will be given.

Mon, 21 May 2012

14:15 - 15:15
Oxford-Man Institute

Some applications of the Ninomiya-Victoir scheme in the context of financial engineering

CHRISTIAN BAYER
(University of Vienna)
Abstract

Based on ideas from rough path analysis and operator splitting, the Kusuoka-Lyons-Victoir scheme provides a family of higher order methods for the weak approximation of stochastic differential equations. Out of this family, the Ninomiya-Victoir method is especially simple to implement and to adjust to various different models. We give some examples of models used in financial engineering and comment on the performance of the Ninomiya-Victoir scheme and some modifications when applied to these models.

Mon, 21 May 2012

12:00 - 13:00
L3

Double Field Theory and the Geometry of Duality

Chris Hull
(Imperial College London)
Abstract

String theory on a torus requires the introduction of dual coordinates

conjugate to string winding number. This leads to physics and novel geometry in a doubled space. This will be

compared to generalized geometry, which doubles the tangent space but not the manifold.

For a d-torus,   string theory can be formulated in terms of an infinite

tower of fields depending on both the d torus coordinates and the d dual

coordinates. This talk focuses on a finite subsector  consisting of a metric

and B-field (both d x d matrices) and a dilaton all depending on the 2d

doubled torus coordinates.

The double field theory is constructed and found to have a novel symmetry

that reduces to diffeomorphisms and anti-symmetric tensor gauge

transformations in certain circumstances. It also has manifest T-duality

symmetry which provides a generalisation of the usual Buscher rules to

backgrounds without isometries. The theory has a real dependence on the full

doubled geometry:  the dual dimensions are not auxiliary. It is concluded

that the doubled geometry is physical and dynamical.

Fri, 18 May 2012

14:30 - 15:30
DH 3rd floor SR

Inverse methods in glaciology

Dr. Hilmar Gudmundsson
(British Antarctic Survey, Cambridge)
Abstract

Inverse methods are frequently used in geosciences to estimate model parameters from indirect measurements. A common inverse problem encountered when modelling the flow of large ice masses such as the Greenland and the Antarctic ice sheets is the determination of basal conditions from surface data. I will present an overview over some of the inverse methods currently used to tackle this problem and in particular discuss the use of Bayesian inverse methods in this context. Examples of the use of adjoint methods for large-scale optimisation problems that arise, for example, in flow modelling of West-Antarctica will be given.

Fri, 18 May 2012

14:15 - 15:00
DH 1st floor SR

Absence of arbitrage and changes of measure

Prof Martin Schweizer
(ETH Zurich)
Abstract

Absence of arbitrage is a highly desirable feature in mathematical models of financial markets. In its pure form (whether as NFLVR or as the existence of a variant of an equivalent martingale measure R), it is qualitative and therefore robust towards equivalent changes of the underlying reference probability (the "real-world" measure P). But what happens if we look at more quantitative versions of absence of arbitrage, where we impose for instance some integrability on the density dR/dP? To which extent is such a property robust towards changes of P? We discuss these uestions and present some recent results.

The talk is based on joint work with Tahir Choulli (University of Alberta, Edmonton).

Thu, 17 May 2012

17:00 - 18:15
Martin Wood Lecture

Speculation and bubbles

Jose A Scheinkman (Theodore Wells '29 Professor of Economics at Princeton)
Abstract

In this lecture I will exploit a model of asset prices where speculators overconfidence is a source of heterogeneous beliefs and arbitrage is limited. In the model, asset buyers are the most positive investors, but prices exceed their optimistic valuation because the owner of an asset has the option of reselling it in the future to an even more optimistic buyer. The value of this resale option can be identified as a bubble. I will focus on assets with a fixed terminal date, as is often the case with credit instruments. I will show that the size of a bubble satisfies a Partial Differential Equation that is similar to the equation satisfied by an American option and use the PDE to evaluate the impact of parameters such as interest rates or a “Tobin tax” on the size of the bubble and on trading volume.

Thu, 17 May 2012

17:00 - 18:00
L3

TBA

*Cancelled*
Thu, 17 May 2012

16:00 - 17:00
DH 1st floor SR

A Unifying Framework for Information Theoretic Feature Selection

Gavin Brown
(Manchester)
Abstract

Feature Selection is a ubiquitous problem in across data mining,

bioinformatics, and pattern recognition, known variously as variable

selection, dimensionality reduction, and others. Methods based on

information theory have tremendously popular over the past decade, with

dozens of 'novel' algorithms, and hundreds of applications published in

domains across the spectrum of science/engineering. In this work, we

asked the question 'what are the implicit underlying statistical

assumptions of feature selection methods based on mutual information?'

The main result I will present is a unifying probabilistic framework for

information theoretic feature selection, bringing almost two decades of

research on heuristic methods under a single theoretical interpretation.

Thu, 17 May 2012

14:00 - 15:00
Gibson Grd floor SR

Towards time-stepping-free solution of large initial value problems by block Krylov projections

Dr Mike Botchev
(University of Twente)
Abstract

Exponential time integrators are a powerful tool for numerical solution

of time dependent problems. The actions of the matrix functions on vectors,

necessary for exponential integrators, can be efficiently computed by

different elegant numerical techniques, such as Krylov subspaces.

Unfortunately, in some situations the additional work required by

exponential integrators per time step is not paid off because the time step

can not be increased too much due to the accuracy restrictions.

To get around this problem, we propose the so-called time-stepping-free

approach. This approach works for linear ordinary differential equation (ODE)

systems where the time dependent part forms a small-dimensional subspace.

In this case the time dependence can be projected out by block Krylov

methods onto the small, projected ODE system. Thus, there is just one

block Krylov subspace involved and there are no time steps. We refer to

this method as EBK, exponential block Krylov method. The accuracy of EBK

is determined by the Krylov subspace error and the solution accuracy in the

projected ODE system. EBK works for well for linear systems, its extension

to nonlinear problems is an open problem and we discuss possible ways for

such an extension.

Thu, 17 May 2012

13:00 - 14:00
DH 1st floor SR

Quick Computation of Upper and Lower bounds for Discretised Min-Max Equations

Jan Witte
Abstract

Min-Max equations, also called Isaacs equations, arise from many applications, eg in game theory or mathematical finance. For their numerical solution, they are often discretised by finite difference

methods, and, in a second step, one is then faced with a non-linear discrete system. We discuss how upper and lower bounds for the solution to the discretised min-max equation can easily be computed.

Thu, 17 May 2012

12:30 - 13:30
Gibson 1st Floor SR

Two uniqueness results for the two-dimensional continuity equation with velocity having L^1 or measure curl

Gianluca Crippa
(Universität Basel)
Abstract

In this seminar I will present two results regarding the uniqueness (and further properties) for the two-dimensional continuity equation

and the ordinary differential equation in the case when the vector field is bounded, divergence free and satisfies additional conditions on its distributional curl. Such settings appear in a very natural way in various situations, for instance when considering two-dimensional incompressible fluids. I will in particular describe the following two cases:\\

(1) The vector field is time-independent and its curl is a (locally finite) measure (without any sign condition).\\

(2) The vector field is time-dependent and its curl belongs to L^1.\\

Based on joint works with: Giovanni Alberti (Universita' di Pisa), Stefano Bianchini (SISSA Trieste), Francois Bouchut (CNRS &

Universite' Paris-Est-Marne-la-Vallee) and Camillo De Lellis (Universitaet Zuerich).

Thu, 17 May 2012

12:00 - 13:00
L3

Hyperkähler Metrics in Lie Theory

Markus Röser
Abstract

In this talk our aim is to explain why there exist hyperkähler metrics on the cotangent bundles and on coadjoint orbits of complex Lie groups. The key observation is that both the cotangent bundle of $G^\mathbb C$ and complex coadjoint orbits can be constructed as hyperkähler quotients in an infinite-dimensional setting: They may be identified with certain moduli spaces of solutions to Nahm's equations, which is a system of non-linear ODEs arising in gauge theory. 

In the first half we will describe the hyperkähler quotient construction, which can be viewed as a version of the Marsden-Weinstein symplectic quotient for complex symplectic manifolds. We will then introduce Nahm's equations and explain how their moduli spaces of solutions may be related to the above Lie theoretic objects.

Tue, 15 May 2012
17:00
L2

'More words on words'

Aner Shalev
(Jerusalem)
Abstract

In recent years there has been extensive interest in word maps on groups, and various results were obtained, with emphasis on simple groups. We shall focus on some new results on word maps for more general families of finite and infinite groups.

Tue, 15 May 2012

15:45 - 16:45
L3

Nekrasov's formula and refined sheaf counting

Balazs Szendroi
(Oxford)
Abstract

I revisit the identification of Nekrasov's K-theoretic partition function, counting instantons on $R^4$, and the (refined) Donaldson-Thomas partition function of the associated local Calabi-Yau threefold. The main example will be the case of the resolved conifold, corresponding to the gauge group $U(1)$. I will show how recent mathematical results about refined DT theory confirm this identification, and speculate on how one could lift the equality of partition functions to a structural result about vector spaces.

Tue, 15 May 2012
13:15
DH 1st floor SR

Mathematical Modelling and Numerical Simulation of Tissue Engineered Bone

Katie Leonard
Abstract

 The use of tissue engineered implants could facilitate unions in situations where there is loss of bone or non-union, thereby increasing healing time, reducing the risk of infections and hence reducing morbidity. Currently engineered bone tissue is not of sufficient quality to be used in widespread clinical practice.  In order to improve experimental design, and thereby the quality of the tissue-constructs, the underlying biological processes involved need to be better understood. In conjunction with experimentalists, we consider the effect hydrodynamic pressure has on the development and regulation of bone, in a bioreactor designed specifically for this purpose. To answer the experimentalists’ specific questions, we have developed two separate models; in this talk I will present one of these, a multiphase partial differential equation model to describe the evolution of the cells, extracellular matrix that they deposit, the culture medium and the scaffold.  The model is then solved using the finite element method using the deal.II library.

Tue, 15 May 2012

12:00 - 13:00
L3

BPS state counting on singular varieties

Elizabeth Gasparim (UNICAMP-Brazil)
Abstract

This is a report of joint work with T. Koppe, P. Majumdar, and K.

 Ray.

I will define new partition functions for theories with targets on toric

singularities via

products of old partition functions on  crepant resolutions. I will

present explicit examples 

and show that the  new partition functions turn out to be homogeneous on

MacMahon factors.