Mon, 10 Oct 2011

12:00 - 13:00
L3

Superconformal Chern-Simons Theories and The AdS/CFT Correspondence

Arthur Lipstein
(Oxford)
Abstract

The study of superconformal Chern-Simons theories has led to a deeper understanding of M-theory and a new example of the AdS/CFT correspondence. In this talk, I will give an overview of superconformal Chern-Simons theories and their gravity duals. I will also describe some recent work on scattering amplitudes in these theories.

Thu, 06 Oct 2011

14:00 - 15:00
Gibson Grd floor SR

The numerical computation of violent liquid motion

Prof Frederic Dias
(University College Dublin and ENS Cachan)
Abstract

Liquid impact is a key issue in various industrial applications (seawalls, offshore structures, breakwaters, sloshing in tanks of liquefied natural gas vessels, wave energy converters, offshore wind turbines, etc). Numerical simulations dealing with these applications have been performed by many groups, using various types of numerical methods. In terms of the numerical results, the outcome is often impressive, but the question remains of how relevant these results are when it comes to determining impact pressures. The numerical models are too simplified to reproduce the high variability of the measured pressures. In fact, for the time being, it is not possible to simulate accurately both global and local effects. Unfortunately it appears that local effects predominate over global effects when the behaviour of pressures is considered.

\\

\\

Having said this, it is important to point out that numerical studies can be quite useful to perform sensitivity analyses in idealized conditions such as a liquid mass falling under gravity on top of a horizontal wall and then spreading along the lateral sides. Simple analytical models inspired by numerical results on idealized problems can also be useful to predict trends.

\\

\\

The talk is organized as follows: After an introduction on some of the industrial applications, it will be explained to what extent numerical studies can be used to improve our understanding of impact pressures. Results on a liquid mass hitting a wall obtained by various numerical codes will be shown.

Wed, 05 Oct 2011
10:10
OCCAM Common Room (RI2.28)

From individual to collective behaviour of coupled velocity jump processes: a locust example

Jan Haskovec
Abstract

A class of stochastic individual-based models, written in terms of coupled velocity jump processes, is presented and analysed.

This modelling approach incorporates recent experimental findings on behaviour of locusts. It exhibits nontrivial dynamics with a "phase change" behaviour and recovers the observed group directional switching. Estimates of the expected switching times, in terms of number of individuals and values of the model coefficients, are obtained using the corresponding Fokker-Planck equation. In the limit of large populations, a system of two kinetic equations with nonlocal and nonlinear right hand side is derived and analyzed. The existence of its solutions is proven and the systemʼs long-time behaviour is investigated. Finally, a first step towards the mean field limit of topological interactions is made by studying the effect of shrinking the interaction radius in the individual-based model when the number of individuals grows. This is a joint work with Radek Erban.

Thu, 22 Sep 2011

12:30 - 13:30
Gibson 1st Floor SR

Travel Time Tomography, Boundary Rigidity and Tensor Tomography

Gunther Uhlmann
(and UC Irvine)
Abstract

We will give a survey on some recent results on travel tomography which consists in determining the index of refraction of a medium by measuring the travel times of sound waves going through the medium. In differential geometry this is known as the boundary rigidity problem. We will also consider the related problem of tensor tomography which consists in determining a function, a vector field or tensors of higher rank from their integrals along geodesics.

Tue, 20 Sep 2011
12:30
Gibson 1st Floor SR

From homogenization to averaging in cellular flows

Gautam Iyer
(Carnegie Mellon)
Abstract
We consider an elliptic eigenvalue problem in the presence a fast cellular flow in a two-dimensional domain. It is well known that when the amplitude, A, is fixed, and the number of cells, $L^2$, increases to infinity, the problem `homogenizes' -- that is, can be approximated by the solution of an effective (homogeneous) problem. On the other hand, if the number of cells, $L^2$, is fixed and the amplitude $A$ increases to infinity, the solution ``averages''. In this case, the solution equilibrates along stream lines, and it's behaviour across stream lines is given by an averaged equation.
In this talk we study what happens if we simultaneously send both the amplitude $A$, and the number of cells $L^2$ to infinity. It turns out that if $A \ll L^4$, the problem homogenizes, and if $A \gg L^4$, the problem averages. The transition at $A \approx L^4$ can quickly predicted by matching the effective diffusivity of the homogenized problem, to that of the averaged problem. However a rigorous proof is much harder, in part because the effective diffusion matrix is unbounded. I will provide the essential ingredients for the proofs in both the averaging and homogenization regimes. This is joint work with T. Komorowski, A. Novikov and L. Ryzhik.
Wed, 14 Sep 2011

10:15 - 11:15
OCCAM Common Room (RI2.28)

The Mathematics Behind Biological Invasion Processes

Mark Lewis
(University of Alberta)
Abstract

Models for invasions track the front of an expanding wave of population density. They take the form of parabolic partial differential equations and related integral formulations. These models can be used to address questions ranging from the rate of spread of introduced invaders and diseases to the ability of vegetation to shift in response to climate change.

In this talk I will focus on scientific questions that have led to new mathematics and on mathematics that have led to new biological insights. I will investigate the mathematical and empirical basis for multispecies invasions and for accelerating invasion waves.

Tue, 13 Sep 2011
12:00

Secret symmetries of AdS/CFT

Allessandro Torielli
(University of York)
Abstract

We review the representation theory of the integrable model underlying the AdS_5/CFT_4 correspondence. We will discuss short and long multiplets, and their impact on the issue of the universal R-matrix. We will give special emphasis to the role of the so-called 'secret symmetry', which completes the Yangian symmetry of the system to a yet to be understood new type of quantum group.

Fri, 09 Sep 2011
11:15
OCCAM Common Room (RI2.28)

OCCAM Group Meeting

Various
Abstract
  • Rob Style - "Drying and freezing stuff - the wrap up"
  • Maria Bruna-Estrach - “Including excluded-volume effects into diffusion of hard spheres" 
  • Patricio Farrell - “Multiscale Analysis for Elliptic Boundary Value Problems using Radial Basis Functions"
Wed, 07 Sep 2011

10:10 - 11:10
OCCAM Common Room (RI2.28)

Computations with guaranteed accuracy

Tomas Vejchodsky
Abstract

Would you like to solve a partial differential equation efficiently with a relative error of 10% or would you prefer to wait a bit longer and solve it with an error of only 1% ? Is it sufficient to know that the error is about 1% (having no idea what the `about' means) or would you prefer to have reliable information that the error is guaranteed to be below the required tolerance?

Answering these questions is necessary for the efficient and reliable numerical solution of practically any mathematical problem. In the context of numerical solution of partial differential equations, the crucial tool is the adaptive algorithm with suitable error indicators and estimators. I will overview the adaptive algorithm and its variants. I will concentrate on the a posteriori error estimators with the emphasis on the guaranteed ones.

Wed, 31 Aug 2011

10:15 - 11:15
OCCAM Common Room (RI2.28)

A nonlocal vector calculus and nonlocal models for diffusion and mechanics

Max Gunzburger
(Florida State University)
Abstract

We define a set of nonlocal operators and develop a nonlocal vector calculus that mimics the classical differential vector calculus. Included are the definitions of nonlocal divergence, gradient, and curl operators and the derivation of nonlocal integral theorems and identities. We indicate how, through certain limiting processes, the nonlocal operators are connected to their differential counterparts. The nonlocal operators are shown to appear in nonlocal models for diffusion and in the nonlocal, spatial derivative free, peridynamics continuum model for solid mechanics. We show, for example, that unlike elliptic partial differential equations, steady state versions of the nonlocal models do not necessary result in the smoothing of data. We also briefly consider finite element methods for nonlocal problems, focusing on solutions containing jump discontinuities; in this setting, nonlocal models can lead to optimally accurate approximations.

Mon, 15 Aug 2011

10:00 - 14:00

TBA

TBA
(BP)
Abstract

This workshop will probably take place at BP's premises.

Wed, 27 Jul 2011

10:10 - 11:15
OCCAM Common Room (RI2.28)

Stochastic theory of intracellular calcium release

Sten Ruediger
Abstract

I describe recent work on the synchronization of IP3R calcium channels in the interior of cells. Hybrid  models of calcium release couple deterministic equations for diffusion and reactions of calcium ions to stochastic gating transitions of channels. I discuss the validity of such models as well as numerical methods.Hybrid models were used to simulate cooperative release events for clusters of channels. I show that for these so-called puffs the mixing assumption for reactants does not hold. Consequently, useful definitions of averaged calcium concentrations in the cluster are not obvious. Effective reaction kinetics can be derived, however, by separating concentrations for self-coupling of channels and coupling to different channels.

Based on the spatial approach, a Markovian model can be inferred, representing well calcium puffs in neuronal cells. I then describe further reduction of the stochastic model and the synchronization arising for small channel numbers. Finally, the effects of calcium binding proteins on duration of release is discussed.