Tue, 07 Jun 2011
13:15
DH 1st floor SR

Modelling Viral Persistence in the Presence of Host Immunity in Chronic HTLV-I Infection

Aarom Lim
(University of Oxford))
Abstract

Human T-lymphotropic virus type I (HTLV-I) is a persistent human retrovirus characterised by a high proviral load and risk of developing ATL, an aggressive blood cancer, or HAM/TSP, a progressive neurological and inflammatory disease. Infected individuals typically mount a large, chronically activated HTLV-I-specific CTL response, yet the virus has developed complex mechanisms to evade host immunity and avoid viral clearance. Moreover, identification of determinants to the development of disease has thus far been elusive.

 This model is based on a recent experimental hypothesis for the persistence of HTLV-I infection and is a direct extension of the model studied by Li and Lim (2011). A four-dimensional system of ordinary differential equations is constructed that describes the dynamic interactions among viral expression, infected target cell activation, and the human immune response. Focussing on the particular roles of viral expression and host immunity in chronic HTLV-I infection offers important insights to viral persistence and pathogenesis.

Mon, 06 Jun 2011
17:00
Gibson 1st Floor SR

Some Recent Results on the Doi-Smoluchowski Equation Which Arises in the Modeling of Nematic Liquid Crystals

Jesenko Vukadinovic
(City University of New York)
Abstract

The talk will address two recent results concerning the Doi-Smoluchowski equation and the Onsager model for nematic liquid crystals. The first result concerns the existence of inertial manifolds for the Smloluchowski equation both in the presence and in the absence of external flows. While the Doi-Smoluchowski equation as a PDE is an infinite-dimensional dynamical system, it reduces to a system of ODEs on a set coined inertial manifold, to which all other solutions converge exponentially fast.  The proof uses a non-standard method, which consists in circumventing the restrictive spectral-gap condition, which the original equation fails to satisfy by transforming the equation into a form that does. 

The second result concerns the isotropic-nematic phase transition for the Onsager model on the circle using more complicated potentials than the Maier-Saupe potential. Exact multiplicity of steady-states on the circle is proven for the two-mode truncation of the Onsager potential.    

Mon, 06 Jun 2011
17:00
Oxford-Man Institute

tba

Sasha Grigoryan
(Bielefeld University)
Mon, 06 Jun 2011
15:45
Oxford-Man Institute

The one-dimensional Kardar-Parisi -Zhang equation and its universality class

Herbert Spohn
Abstract

In 1986 Kardar, Parisi, and Zhang proposed a stochastic PDE for the motion of driven interfaces,
in particular for growth processes with local updating rules. The solution to the 1D KPZ equation
can be approximated through the weakly asymmetric simple exclusion process. Based on work of 
Tracy and Widom on the PASEP, we obtain an exact formula for the one-point generating function of the KPZ
equation in case of sharp wedge initial data. Our result is valid for all times, but of particular interest is
the long time behavior, related to random matrices, and the finite time corrections. This is joint work with 
Tomohiro Sasamoto.

Mon, 06 Jun 2011
14:15
Oxford-Man Institute

Modified equations, backward error analysis and numerical methods for stiff stochastic differential equations.

Konstantinos Zygalakis
(University of Oxford)
Abstract

: Backward error analysis is a technique that has been extremely successful in understanding the behaviour of numerical methods for ordinary differential equations.  It is possible to fit an ODE (the so called modified equation) to a numerical method to very high accuracy. Backward error analysis has been of particular importance in the numerical study of Hamiltonian problems, since it allows to approximate symplectic numerical methods by a perturbed Hamiltonian system, giving an approximate statistical mechanics for symplectic methods. 

Such a systematic theory in the case of numerical methods for stochastic differential equations (SDEs) is currently lacking. In this talk we will describe a general framework for deriving modified equations for SDEs with respect to weak convergence. We will start by quickly recapping of how to derive modified equations in the case of ODEs and describe how these ideas can be generalized in the case of SDEs. Results will be presented for first order methods such as the Euler-Maruyama and the Milstein method. In the case of linear SDEs, using the Gaussianity of the underlying solutions, we will derive a SDE that the numerical method solves exactly in the weak sense. Applications of modified equations in the numerical study of Langevin equations and in the calculation of effective diffusivities will also be discussed, as well as the use of modified equations  as a tool for constructing higher order methods for stiff stochastic differential equations.

This is joint work with A. Abdulle (EPFL). D. Cohen (Basel), G. Vilmart (EPFL).

Mon, 06 Jun 2011

12:00 - 13:00
L3

String compactifications on toric varieties

Magdalena Larfors
(LMU Munich)
Abstract
In the absence of background fluxes and sources, compactifying string theories on Calabi-Yau three-folds leads to supersymmetric solutions. Turning on fluxes, e.g. to lift the moduli of the compactification, generically forces the three-fold to break the Calabi-Yau conditions, and instead fulfill the weaker geometrical condition of having a reduced structure group. In this talk I will demonstrate that three-dimensional smooth, compact, toric varieties can have reduced structure group, and thus be suitable for flux compactifications of string theory. Since the class of three-dimensional SCTV is large, this is promising for the construction of new, phenomenologically interesting string theory vacua.
Fri, 03 Jun 2011
16:30
L2

‘Aspects of the work of Dan Quillen’.

Prof Graeme Segal
(Oxford)
Abstract

Graeme Segal shall describe some of Dan Quillen’s work, focusing on his amazingly productive period around 1970, when he not only invented algebraic K-theory in the form we know it today, but also opened up several other lines of research which are still in the front line of mathematical activity. The aim of the talk will be to give an idea of some of the mathematical influences which shaped him, of his mathematical perspective, and also of his style and his way of approaching mathematical problems.

Fri, 03 Jun 2011
14:15
DH 1st floor SR

Cross hedging with futures in a continuous-time model with a stationary spread

Prof Stefan Ankirchner
(University of Bonn)
Abstract

When managing risk, frequently only imperfect hedging instruments are at hand.

We show how to optimally cross-hedge risk when the spread between the hedging

instrument and the risk is stationary. At the short end, the optimal hedge ratio

is close to the cross-correlation of the log returns, whereas at the long end, it is

optimal to fully hedge the position. For linear risk positions we derive explicit

formulas for the hedge error, and for non-linear positions we show how to obtain

numerically effcient estimates. Finally, we demonstrate that even in cases with no

clear-cut decision concerning the stationarity of the spread it is better to allow for

mean reversion of the spread rather than to neglect it.

The talk is based on joint work with Georgi Dimitroff, Gregor Heyne and Christian Pigorsch.

Fri, 03 Jun 2011

12:00 - 13:00
SR1

Some random facts about the Weil conjectures

John Calabrese
(University of Oxford)
Abstract

I'll start by defining the zeta function and stating the Weil conjectures (which have actually been theorems for some time now). I'll then go on by saying things like "Weil cohomology", "standard conjectures" and "Betti numbers of the Grassmannian". Hopefully by the end we'll all have learned something, including me.

Thu, 02 Jun 2011
17:00
L3

"Generalized lattices over local Dedekind-like rings"

Carlo Toffalori - joint work with Gena Puninski
(Florence - Moscow)
Abstract

Recent papers by Butler-Campbell-Kovàcs, Rump, Prihoda-Puninski and others introduce over an order O over a Dedekind domain D a notion of "generalized lattice", meaning a D-projective O-module.

We define a similar notion over Dedekind-like rings -- a class of rings intensively studied by Klingler and Levy. We examine in which cases every generalized lattices is a direct sum of ordinary -- i.e., finitely generated -- lattices. We also consider other algebraic and model theoretic questions about generalized lattices.

Thu, 02 Jun 2011

16:00 - 17:00
DH 1st floor SR

Theory of ac voltammetry for reversible electrochemical systems using multiple scales analysis

Chris Bell
(Imperial College London)
Abstract

Voltammetry is a powerful method for interrogating electrochemical systems. A voltage is applied to an electrode and the resulting current response analysed to determine features of the system under investigation, such as concentrations, diffusion coefficients, rate constants and thermodynamic potentials. Here we will focus on ac voltammetry, where the voltage signal consists of a high frequency sine-wave superimposed on a linear ramp. Using multiple scales analysis, we find analytical solutions for the harmonics of the current response and show how they can be used to determine the system parameters. We also include the effects of capacitance due to the double-layer at the electrode surface and show that even in the presence of large capacitance, the harmonics of the current response can still be isolated using the FFT and the Hanning window.

Thu, 02 Jun 2011

16:00 - 17:00

Class invariants for quartic CM-fields

Marco Streng
(Warwick)
Abstract

I show how invariants of curves of genus 2 can be used for explicitly constructing class fields of

certain number fields of degree 4.

Thu, 02 Jun 2011

14:00 - 15:00
Gibson Grd floor SR

Analysis of a multiscale method for nonlinear nonmonotone elliptic problems

Prof Assyr Abdulle
(Ecole Polytechnique Federale de Lausanne)
Abstract

Following the framework of the heterogeneous multiscale method, we present a numerical method for nonlinear elliptic homogenization problems. We briefly review the numerical, relying on an efficient coupling of macro and micro solvers, for linear problems. A fully discrete analysis is then given for nonlinear (nonmonotone) problems, optimal convergence rates in the H1 and L2 norms are derived and the uniqueness of the method is shown on sufficiently fine macro and micro meshes.

Numerical examples confirm the theoretical convergence rates and illustrate the performance and versatility of our approach.

Thu, 02 Jun 2011
13:00
DH 1st floor SR

Pricing and calibration of CDOs in a multi-dimensional structural jump-diffusion model'

Karolina Bujok
Abstract

We consider a multidimensional structural credit model, where each company follows a jump-diffusion process and is connected with other companies via global factors. We assume that a company can default both expectedly, due to the diffusion part, and unexpectedly, due to the jump part, by a sudden fall in a company's value as a result of a global shock. To price CDOs efficiently, we use ideas, developed by Bush et al.

for diffusion processes, where the joint density of the portfolio is approximated by a limit of the empirical measure of asset values in the basket. We extend the method to jump-diffusion settings. In order to check if our model is flexible enough, we calibrate it to CDO spreads from pre-crisis and crisis periods.

For both data sets, our model fits the observed spreads well, and what is important, the estimated parameters have economically convincing values.

We also study the convergence of our method to basic Monte Carlo and conclude that for a CDO, that typically consists of 125 companies, the method gives close results to basic Monte Carlo."

Thu, 02 Jun 2011
11:00
L3

"Abstract elementary classes and absolute Galois groups"

Franziska Jahnke
(Oxford)
Abstract

The class of fields with a given absolute Galois group is in general not an elementary class. Looking instead at abstract elementary classes we can show that this class, as well as the class of pairs (F,K), where F is a function field in one variable over a perfect base field K with a fixed absolute Galois group, is abstract elementary. The aim is to show categoricity for the latter class. In this talk, we will be discussing some consequences of basic properties of these two classes.

Wed, 01 Jun 2011

16:00 - 17:00
SR1
Wed, 01 Jun 2011

16:00 - 17:30
L3

A bitopological point-free approach to compactification

Olaf Klinke
(University of Birmingham)
Abstract

It is known for long that the set of possible compactifications of a topological space (up to homeomorphism) is in order-preserving bijection to "strong inclusion" relations on the lattice of open sets. Since these relations do not refer to points explicitly, this bijection has been generalised to point-free topology (a.k.a. locales). The strong inclusion relations involved are typically "witnessed" relations. For example, the Stone-Cech compactification has a strong inclusion witnessed by real-valued functions. This makes it natural to think of compactification in terms of d-frames, a category invented by Jung and Moshier for bitopological Stone duality. Here, a witnessed strong inclusion is inherent to every object and plays a central role.

We present natural analogues of the topological concepts regularity, normality, complete regularity and compactness in d-frames. Compactification is then a coreflection into the category of d-frames dually equivalent to compact Hausdorff spaces. The category of d-frames has a few surprising features. Among them are:

  • The real line with the bitopology of upper and lower semicontinuity admits precisely one compactification, the extended reals.
  • Unlike in the category of topological spaces (or locales), there is a coreflection into the subcategory of normal d-frames, and every compactification can be factored as "normalisation" followed by Stone-Cech compactification.
Wed, 01 Jun 2011

11:30 - 12:30
ChCh, Tom Gate, Room 2

Sophic groups

Elisabeth Fink
(University of Oxford)
Abstract

The talk will start with the definition of amenable groups. I will discuss various properties and interesting facts about them. Those will be underlined with representative examples. Based on this I will give the definition and some basic properties of sofic groups, which only emerged quite recently. Those groups are particularly interesting as it is not know whether every group is sofic.