Fri, 12 Feb 2010

11:30 - 13:00
OCCAM Common Room (RI2.28)

OCCAM group meeting

Various
(Oxford)
Fri, 12 Feb 2010

10:00 - 11:15
DH 1st floor SR

Why wound healers need models

Dr Raj Mani
(University of Southampton)
Abstract

The significance of the effects of non-healing wounds has been the topic of many research papers and lectures during the last 25 years. Efforts have been made to understand the effects of long-standing venous hypertension, diabetes, the prevalence of wounds in such conditions with as well as the difficulties faced in managing such wounds with some success. Successful efforts to define standard care regimes have also been made. However, attempts to introduce innovative therapy have been much less successful. Is this merely because we have not understood the intricacies of the problem? And would system based modelling be an untried technique?

Venous ulcers are the majority of lower extremity wounds, and a clinical challenge. A previously developed model of venous ulcers permits some understanding of why compression bandaging is successful but fails to accommodate complications such as exudate and infection. Could this experimental model be improved by system based modelling?

Chronic wounds need to be modelled however the needs for such models should be examined in order that the outcome permits advances in our thinking as well in clinical management.

Thu, 11 Feb 2010
17:00
L3

Pseudofinite groups and groups of finite Morley rank

Alexandre Borovik
(Manchester)
Abstract

The talks will discuss relations between two major conjectures in the theory of groups of finite Morley rank, a modern chapter of model theoretic algebra. One conjecture, the famous the Cherlin-Zilber Algebraicity Conjecture formulated in 1970-s states that infinite simple groups of finite Morley rank are isomorphic to simple algebraic groups over algebraically closed fields. The other conjecture, due to Hrushovski and more recent, states that a generic automorphism of a simple group of finite Morley rank has pseudofinite group of fixed points.

Hrushovski showed that the Cherlin-Zilber Conjecture implies his conjecture. Proving Hrushovski's Conjecture and reversing the implication would provide a new efficient approach to proof of Cherlin-Zilber Conjecture.

Meanwhile, the machinery that is already available for the work at pseudofinite/finite Morley rank interface already yields an interesting

result: an alternative proof of the Larsen-Pink Theorem (the latter says, roughly speaking, that "large" finite simple groups of matrices are Chevalley groups over finite fields).

Thu, 11 Feb 2010

16:30 - 17:30
DH 1st floor SR

Spinning viscous sheets, or pizza, pancakes and doughnuts

Peter Howell (OCIAM)
Abstract

We study the axisymmetric stretching of a thin sheet of viscous fluid

driven by a centrifugal body force. Time-dependent simulations show that

the sheet radius tends to infinity in finite time. As the critical time is

approached, the sheet becomes partitioned into a very thin central region

and a relatively thick rim. A net momentum and mass balance in the rim leads

to a prediction for the sheet radius near the singularity that agrees with the numerical

simulations. By asymptotically matching the dynamics of the sheet with the

rim, we find that the thickness in the central region is described by a

similarity solution of the second kind. For non-zero surface tension, we

find that the similarity exponent depends on the rotational Bond number B,

and increases to infinity at a critical value B=1/4. For B>1/4, surface

tension defeats the centrifugal force, causing the sheet to retract rather

than stretch, with the limiting behaviour described by a similarity

solution of the first kind.

Thu, 11 Feb 2010

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Resolution of sharp fronts in the presence of model error in variational data assimilation

Dr. Melina Freitag
(University of Bath)
Abstract

We show that data assimilation using four-dimensional variation

(4DVar) can be interpreted as a form of Tikhonov regularisation, a

familiar method for solving ill-posed inverse problems. It is known from

image restoration problems that $L_1$-norm penalty regularisation recovers

sharp edges in the image better than the $L_2$-norm penalty

regularisation. We apply this idea to 4DVar for problems where shocks are

present and give some examples where the $L_1$-norm penalty approach

performs much better than the standard $L_2$-norm regularisation in 4DVar.

Thu, 11 Feb 2010

12:00 - 13:00
SR1

An overview of the SYZ conjecture and calibrated geometry

Hwasung Mars Lee
(Oxford)
Abstract

We will present a physical motivation of the SYZ conjecture and try to understand the conjecture via calibrated geometry. We will define calibrated submanifolds, and also give sketch proofs of some properties of the moduli space of special Lagrangian submanifolds. The talk will be elementary and accessible to a broad audience.

Tue, 09 Feb 2010
16:00
SR1

The Alexander Polynomial

Jessica Banks
(Oxford)
Abstract

The Alexander polynomial of a link was the first link polynomial. We give some ways of defining this much-studied invariant, and derive some of its properties.

Tue, 09 Feb 2010

14:30 - 15:30
L3

Combinatorial theorems in random sets

David Conlon
(Cambridge)
Abstract

The famous theorem of Szemerédi says that for any natural number $k$ and any $a>0$ there exists $n$ such that if $N\ge n$ then any subset $A$ of the set $[N] =\{1, 2,\ldots , N\}$ of size $|A| \ge a N$ contains an arithmetic progression of length $k$. We consider the question of when such a theorem holds in a random set. More precisely, we say that a set $X$ is $(a, k)$-Szemerédi if every subset $Y$ of $X$ that contains at least $a|X|$ elements contains an arithmetic progression of length $k$. Let $[N]_p$ be the random set formed by taking each element of $[N]$ independently with probability $p$. We prove that there is a threshold at about $p = N^{-1/(k-1)}$ where the probability that $[N]_p$ is $(a, k)$-Szemerédi changes from being almost surely 0 to almost surely 1.

There are many other similar problems within combinatorics. For example, Turán’s theorem and Ramsey’s theorem may be relativised, but until now the precise probability thresholds were not known. Our method seems to apply to all such questions, in each case giving the correct threshold. This is joint work with Tim Gowers.

Mon, 08 Feb 2010

16:00 - 17:00
SR1

Fast reduction in the de Rham cohomology groups of projective hypersurfaces

Sebastian Pancratz
(Mathematical Institute, Oxford)
Abstract

Let $X$ be a smooth hypersurface in projective space over a field $K$ of characteristic zero and let $U$ denote the open complement. Then the elements of the algebraic de Rham cohomology group $H_{dR}^n(U/K)$ can be represented by $n$-forms of the form $Q \Omega / P^k$ for homogeneous polynomials $Q$ and integer pole orders $k$, where $\Omega$ is some fixed $n$-form. The problem of finding a unique representative is computationally intensive and typically based on the pre-computation of a Groebner basis. I will present a more direct approach based on elementary linear algebra. As presented, the method will apply to diagonal hypersurfaces, but it will clear that it also applies to families of projective hypersurfaces containing a diagonal fibre. Moreover, with minor modifications the method is applicable to larger classes of smooth projective hypersurfaces.

Mon, 08 Feb 2010
15:45
Eagle House

'Quenched Exit Estimates and Ballisticity Conditions for Higher-Dimensional Random Walk in Random Environment'

Alexander Drewitz
(Technical University of Berlin)
Abstract

 

ABSTRACT "We give a short introduction to randomwalk in random environment

(RWRE) and some open problems connected to RWRE.

Then, in dimension larger than or equal to four we studyballisticity conditions and their interrelations. For this purpose, we dealwith a certain class of ballisticity conditions introduced by Sznitman anddenoted $(T)_\gamma.$ It is known that they imply a ballistic behaviour of theRWRE and are equivalent for parameters $\gamma \in (\gamma_d, 1),$ where$\gamma_d$ is a constant depending on the dimension and taking values in theinterval $(0.366, 0.388).$ The conditions $(T)_\gamma$ are tightly interwovenwith quenched exit estimates.

As a first main result we show that the conditions are infact equivalent for all parameters $\gamma \in (0,1).$ As a second main result,we prove a conjecture by Sznitman concerning quenched exit estimates.

Both results are based on techniques developed in a paperon slowdowns of RWRE by Noam Berger.

 

(joint work with Alejandro Ram\'{i}rez)"

 

Mon, 08 Feb 2010
14:15
Eagle House

A class of Weakly Interactive Particle Systems and SPDEs

Lei Jin
(University of Oxford)
Abstract

We investigate a class of weakly interactive particle systems with absorption. We assume that the coefficients in our model depend on an "absorbing" factor and prove the existence and uniqueness of the proposed model. Then we investigate the convergence of the empirical measure of the particle system and derive the Stochastic PDE satisfied by the density of the limit empirical measure. This result can be applied to credit modelling. This is a joint work with Dr. Ben Hambly.

Mon, 08 Feb 2010

12:00 - 13:00
L3

Holographic Superconductors in M-Theory

Jerome Gauntlett
(Imperial College)
Abstract
By constructing black hole solutions of D=11 supergravity we analyse the phase diagram of a certain class of three dimensional conformal field theories at finite temperature and finite charge density. The system exhibits superconductivity at lotemperatures and furthermore at zero tmeperature and finite charge density the system exhibits an emergent quantum critical behaviour with conformal symmetry. The construction of the black hole solutions rely on a new understanding of Kaluza-Klein reductions on seven dimensional Sasaki-Einstein manifolds.
Fri, 05 Feb 2010

11:00 - 12:00
Oxford-Man Institute

Rollover Risk and Credit Risk

Wei Xiong
(Princeton University)
Abstract

This paper models a firm’s rollover risk generated by con.ict of interest between debt and equity holders. When the firm faces losses in rolling over its maturing debt, its equity holders are willing to absorb the losses only if the option value of keeping the firm alive justifies the cost of paying off the maturing debt. Our model shows that both deteriorating market liquidity and shorter debt maturity can exacerbate this externality and cause costly firm bankruptcy at higher fundamental thresholds. Our model provides implications on liquidity- spillover effects, the flight-to-quality phenomenon, and optimal debt maturity structures.