Mon, 01 Feb 2010
15:45
Eagle House

Wigner random matrices with weak moment conditions

Kurt Johansson
(Matematiske Institutionen Stockholm)
Abstract

Abstract: There has in the last year been much progresson the universality problem for the spectra of a Wigner random matrices, i.e.Hermitian or symmetric random matrices with independent elements. I will givesome background on this problem and also discuss what can be said when we onlyassume a few moments of the matrix elements to be finite.

 

Mon, 01 Feb 2010
14:15
Eagle House

Scaling Limits and Universality in Disordered Copolimer Models

Giambattista Giamcomin
(University of Paris Diderot)
Abstract

A copolymer is a chain of repetitive units (monomers) that

are almost identical, but they differ in their degree of

affinity for certain solvents. This difference leads to striking

phenomena when the polymer fluctuates

in a non-homogeneous medium, for example made up by two solvents

separated by an interface.

One may observe, for exmple, the localization of the polymer at the

interface between the two solvents.

Much of the literature on the subject focuses on the most basic model

based on the simple symmetric random walk on the integers, but

E. Bolthausen and F. den Hollander (AP 1997) pointed out

the convergence of the (rescaled) free energy of such a discrete model

toward

the free energy of a continuum model, based on Brownian motion,

in the limit of weak polymer-solvent coupling. This result is

remarkable because it strongly suggests

a universal feature for copolymer models. In this work we prove that

this is indeed the case. More precisely,

we determine the weak coupling limit for a general class of discrete

copolymer models, obtaining as limits

a one-parameter (alpha in (0,1)) family of continuum models, based on

alpha-stable regenerative sets.

Mon, 01 Feb 2010

12:00 - 13:00
L3

Twistor-Strings, Grassmannians and Leading Singularities

Lionel Mason
(Oxford)
Abstract
A systematic procedure is derived for obtaining an explicit, L-loop leading singularities of planar N=4 super Yang-Mills scattering amplitudes in twistor space directly from their momentum space channel diagrams. The expressions are given as integrals over the moduli of connected, nodal curves in twistor space whose degree and genus matches expectations from twistor-string theory. We propose that a twistor-string theory for pure N=4 super Yang-Mills, if it exists, is determined by the condition that these leading singularity formulae arise as residues when an unphysical contour for the path integral is used, by analogy with the momentum space leading singularity conjecture. We go on to show that the genus g twistor-string moduli space for g-loop N^{k-2}MHV amplitudes may be mapped into the Grassmannian G(k,n). Restricting to a leading singularity, the image of this map is a 2(n-2)-dimensional subcycle of G(k,n) of exactly the type found from the Grassmannian residue formula of Arkani-Hamed, Cachazo, Cheung and Kaplan. Based on this correspondence and the Grassmannian conjecture, we deduce restrictions on the possible leading singularities of multi-loop N^pMHV amplitudes. In particular, we argue that no new leading singularities can arise beyond 3p loops.
Fri, 29 Jan 2010

11:45 - 13:00
DH 1st floor SR

OCIAM internal seminar

Sarah McBurnie and Dave Hewett
Abstract

McBurnie: “Sound propagation through bubbly liquids”.

Hewett: "Switching on a time-harmonic acoustic source".

Fri, 29 Jan 2010

10:00 - 11:15
DH 1st floor SR

Mechanics of the accommodation mechanism in the human eye

Harvey Burd
(Department of Engineering Science, University of Oxford)
Abstract

When the human eye looks at a distant object, the lens is held in a state of tension by a set of fibres (known as zonules) that connect the lens to the ciliary body. To view a nearby object, the ciliary muscle (which is part of the ciliary body) contracts. This reduces the tension in the zonules, the lens assumes a thicker and more rounded shape and the optical power of the eye increases.

This process is known as accommodation.

With increased age, however, the accommodation mechanism becomes increasingly ineffective so that, from an age of about 50 years onwards, it effectively ceases to function. This condition is known as presbyopia. There is considerable interest in the ophthalmic community on developing a better understanding of the ageing processes that cause presbyopia. As well as being an interesting scientific question in its own right, it is hoped that this improved understanding will lead to improved surgical procedures (e.g. to re-start the accommodation process in elderly cataract patients).

Thu, 28 Jan 2010
17:00
L3

Diophantine Sets of Polynomials over Number Fields

Jeroen Demeyer
(Ghent)
Abstract

 

Let R be a number field (or a recursive subring of anumber field) and consider the polynomial ring R[T].

We show that the set of polynomials with integercoefficients is diophantine (existentially definable) over R[T].

Applying a result by Denef, this implies that everyrecursively enumerable subset of R[T]^k is diophantine over R[T].

Thu, 28 Jan 2010
17:00
L3

TBA

Jeroen Demeyer
(Gwent)
Thu, 28 Jan 2010

16:30 - 17:30
DH 1st floor SR

STEADY STREAMING, VORTEX WAVE INTERACTION THEORY, SELF SUSTAINED PROCESSES AND COHERENT STRUCTURES IN TURBULENT SHEAR FLOWS

Phil Hall
(Imperial College London)
Abstract

Some years ago Hall and Smith in a number of papers developed a theory governing the interaction of vortices and waves in shear flows. In recent years immense interest has been focused on so-called self-sustained processes in turbulent shear flows where the importance of waves interacting with streamwise vortex flows has been elucidated in a number of; see for example the work of Waleffe and colleagues, Kerswell, Gibson, etc. These processes have a striking resemblance to coherent structures observed in turbulent shear flow and for that reason they are often referred to as exact coherent structures. It is shown that the structures associated with the so-called 'lower branch' state, which has been shown to play a crucial role in these self-sustained process, is nothing but a Rayleigh wave vortex interaction with a wave system generating streamwise vortices inside a critical layer. The theory enables the reduction of the 3D Navier Stokes equations to a coupled system for a steady streamwise vortex and an inviscid wave system. The reduced system for the streamwise vortices must be solved with jump conditions in the shear across the critical layer and the position of that layer constitutes a nonlinear pde eigenvalue problem. Remarkable agreement between the asymptotic theory and numerical simulations is found thereby demonstrating the importance of vortex-wave interaction theory in the mathematical description of coherent structures in turbulent shear flows. The theory offers the possibility of drag reduction in turbulent shear flows by controlling the flow to the neighborhood of the lower branch state. The relevance of the work to more general shear flows is also discussed.

Thu, 28 Jan 2010

14:00 - 15:00
3WS SR

Preconditioning Stochastic Finite Element Matrices

Dr. Catherine Powell
(University of Manchester)
Abstract

In the last few years, there has been renewed interest in stochastic

finite element methods (SFEMs), which facilitate the approximation

of statistics of solutions to PDEs with random data. SFEMs based on

sampling, such as stochastic collocation schemes, lead to decoupled

problems requiring only deterministic solvers. SFEMs based on

Galerkin approximation satisfy an optimality condition but require

the solution of a single linear system of equations that couples

deterministic and stochastic degrees of freedom. This is regarded as

a serious bottleneck in computations and the difficulty is even more

pronounced when we attempt to solve systems of PDEs with

random data via stochastic mixed FEMs.

In this talk, we give an overview of solution strategies for the

saddle-point systems that arise when the mixed form of the Darcy

flow problem, with correlated random coefficients, is discretised

via stochastic Galerkin and stochastic collocation techniques. For

the stochastic Galerkin approach, the systems are orders of

magnitude larger than those arising for deterministic problems. We

report on fast solvers and preconditioners based on multigrid, which

have proved successful for deterministic problems. In particular, we

examine their robustness with respect to the random diffusion

coefficients, which can be either a linear or non-linear function of

a finite set of random parameters with a prescribed probability

distribution.

Thu, 28 Jan 2010

13:15 - 14:15
SR1

Co-Higgs bundles II: fibrations and moduli spaces

Steven Rayan
(Oxford)
Abstract

After reviewing the salient details from last week's seminar, I will construct an explicit example of a spectral curve, using co-Higgs bundles of rank 2. The role of the spectral curve in understanding the moduli space will be made clear by appealing to the Hitchin fibration, and from there inferences (some of them very concrete) can be made about the structure of the moduli space. I will make some conjectures about the higher-dimensional picture, and also try to show how spectral varieties might live in that picture.

Thu, 28 Jan 2010

12:30 - 13:30
Gibson 1st Floor SR

Statistical Theories of Liquid Crystals: Onsager, Maier-Saupe and Beyond

François Genoud
(OxPDE, University of Oxford)
Abstract
I will present in detail the celebrated theories of Onsager (1949) and Maier-Saupe (1958) explaining the phenomenon of long-range orientational order in nematic liquid crystals. The models are not rigorous from the mathematical viewpoint and my talk will stay at the formal level. If time permits, I will suggest directions towards a rigorous mean-field theory.
Tue, 26 Jan 2010

15:45 - 16:45
L3

(HoRSe seminar) Symmetric and reduced obstruction theories

Richard Thomas
(Imperial College London)
Abstract

I will describe some more of the deformation theory necessary for the first talk. This leads to a number of natural questions and counterexamples. This talk requires a strong stomach, or a fanatical devotion to symmetric obstruction theories.

Tue, 26 Jan 2010

14:30 - 15:30
L3

Tree packing conjectures; Graceful tree labelling conjecture

Jan Hladky
(University of Warwick)
Abstract

A family of graphs $H_1,...,H_k$ packs into a graph $G$ if there exist pairwise edge-disjoint copies of $H_1,...,H_k$ in $G$. Gyarfas and Lehel conjectured that any family $T_1, ..., T_n$ of trees of respective orders $1, ..., n$ packs into $K_n$. A similar conjecture of Ringel asserts that $2n$ copies of any trees $T$ on $n+1$ vertices pack into $K_{2n+1}$. In a joint work with Boettcher, Piguet, Taraz we proved a theorem about packing trees. The theorem implies asymptotic versions of the above conjectures for families of trees of bounded maximum degree. Tree-indexed random walks controlled by the nibbling method are used in the proof.

In a joint work with Adamaszek, Adamaszek, Allen and Grosu, we used the nibbling method to prove the approximate version of the related Graceful Tree Labelling conjecture for trees of bounded degree.

In the talk we shall give proofs of both results. We shall discuss possible extensions thereof to trees of unbounded degree.

Tue, 26 Jan 2010

14:00 - 15:00
3WS SR

On the existence of modified equations for stochastic differential equations

Dr Konstantinos Zyglakis
(OCCAM (Oxford))
Abstract

In this talk we describe a general framework for deriving

modified equations for stochastic differential equations with respect to

weak convergence. We will start by quickly recapping of how to derive

modified equations in the case of ODEs and describe how these ideas can

be generalized in the case of SDEs. Results will be presented for first

order methods such as the Euler-Maruyama and the Milstein method. In the

case of linear SDEs, using the Gaussianity of the underlying solutions,

we will derive a SDE that the numerical method solves exactly in the

weak sense. Applications of modified equations in the numerical study

of Langevin equations and in the calculation of effective diffusivities

will also be discussed.