The Colloquia are followed by a reception designed to give people the opportunity to have more informal contact with the speaker. A book display will be available at this time in the common room. The series is funded, in part, through the generous support of Oxford University Press.

The colloquia are aimed towards a general mathematical audience.

Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

Past events in this series
12 May 2017

Hinke Osinga, University of Auckland
joint work with: Bernd Krauskopf and Stefanie Hittmeyer (University of Auckland)

Dynamical systems of Lorenz type are similar to the famous Lorenz system of just three ordinary differential equations in a well-defined geometric sense. The behaviour of the Lorenz system is organised by a chaotic attractor, known as the butterfly attractor. Under certain conditions, the dynamics is such that a dimension reduction can be applied, which relates the behaviour to that of a one-dimensional non-invertible map. A lot of research has focussed on understanding the dynamics of this one-dimensional map. The study of what this means for the full three-dimensional system has only recently become possible through the use of advanced numerical methods based on the continuation of two-point boundary value problems. Did you know that the chaotic dynamics is organised by a space-filling pancake? We show how similar techniques can help to understand the dynamics of higher-dimensional Lorenz-type systems. Using a similar dimension-reduction technique, a two-dimensional non-invertible map describes the behaviour of five or more ordinary differential equations. Here, a new type of chaotic dynamics is possible, called wild chaos. 



Add to My Calendar