Bach and the Cosmos - James Sparks and City of London Sinfonia. Oxford Mathematics Public Lecture now online

According to John Eliot Gardiner in his biography of Johann Sebastian Bach, nothing in Bach's rigid Lutheran schooling explains the scientific precision of his work. However, that precision has attracted scientists and mathematicians in particular to the composer's work, not least as its search for structure and beauty seems to chime with their own approach to their subject.

In this Oxford Mathematics Public Lecture Oxford Mathematician James Sparks, himself a former organ scholar at Selwyn College Cambridge, demonstrates just how explicit Bach's mathematical framing is and City of London Sinfonia elucidate with excerpts from the Goldberg Variations. This was one of our most successful Public Lectures, an evening where the Sciences and the Humanities really were in harmony.

Please note this film does not include the full concert performance of the Goldberg Variations.

 

 

 

Posted on 25 Oct 2018, 9:50am. Please contact us with feedback and comments about this page.

Oxford Mathematicians Vicky Neale and Ursula Martin nominated for Suffrage Science awards

Congratulations to Oxford Mathematicians Vicky Neale and Ursula Martin who have been nominated for Suffrage Science awards. The awards celebrate women in science and encourage others to enter science and reach senior leadership roles. The 11 awardees are chosen by the previous award holders and the awards themselves are items of jewellery, inspired by the Suffrage movement, and are passed on as heirlooms from one female scientist to the next. 

Ursula was nominated by Professor Dame Wendy Hall, University of Southampton and Vicky was nominated by Professor Dame Celia Hoyles, University College London.

Posted on 8 Oct 2018, 9:21am. Please contact us with feedback and comments about this page.

A mathematical puzzle - 180 men, 93 women, 33 nationalities. Who are they?

Okay it's not so hard.

Welcome to our new undergraduate students, young mathematicians of diverse nationalities from Afghan to Kazakh, Syrian to Pakistani, Malaysian to Greek. And 70% of UK students from state schools. Welcome to Oxford Mathematics, all of you.

And watch out for a snippet or two from their lectures next week on our Twitter and Facebook pages. We hope it will inspire those of you who hope to join them in the future.

Posted on 4 Oct 2018, 10:37pm. Please contact us with feedback and comments about this page.

The future of Mathematics - welcome to our new DPhil and Masters students

Amid all the debate about equipping ourselves for the 'technological' world of the future, one thing is for sure: the quality of research in the Mathematical and Life Sciences (and beyond) depends on the quality of its young researchers. In that spirit we are delighted to welcome our latest cohort of DPhil (PhD) students, 43 of them, all fully funded, from across the globe. 13 from the UK, 15 from the European Union and a further 15 from India, Kenya, Norway, Australia, Mexico, USA, China, Switzerland, Argentina, Israel and South Africa.  

We would also like to welcome our masters students and in particular our first cohort of Oxford Masters in Mathematical Sciences (OMMS) students, 36 in total, 26 men and 10 women from 17 different countries. This standalone course offers students the opportunity to join our current fourth year undergraduates and work with our internationally renowned faculty.

Welcome to everyone. We (and we don't just mean Oxford) need you all.

Posted on 2 Oct 2018, 12:18pm. Please contact us with feedback and comments about this page.

Roger Penrose's Oxford Mathematics Public Lecture, 'Eschermatics' now online

Roger Penrose's relationship with the artist M.C. Escher was not just one of mutual admiration. Roger's thinking was consistently influenced by Escher, from the famous Penrose tiling to his groundbreaking work in cosmology. The respect was mutual, as was clear when Roger dropped in to see Escher at his home...

Oxford Mathematics hosted this special event in its Public Lecture series during the conference to celebrate the 20th Anniversary of the foundation of the Clay Mathematics Institute. 

 

 

 

 

 

 

 

Posted on 1 Oct 2018, 10:02am. Please contact us with feedback and comments about this page.

Helen Byrne and Francis Woodhouse win Society for Mathematical Biology awards

The Society for Mathematical Biology has announced its 2018 Awards for established biologists and among the winners are Oxford Mathematicians Helen Byrne and Francis Woodhouse.

Helen will be the recipient of the Leah Edelstein-Keshet Prize for her work focused on the development and analysis of mathematical and computational models that describe biomedical systems, with particular application to the growth and treatment of solid tumors, wound healing and tissue engineering. This award recognizes an established scientist with a demonstrated track record of exceptional scientific contributions to mathematical biology and/or has effectively developed mathematical models impacting biology. "Dr. Byrne has made outstanding scientific achievements coupled with her record of active leadership in mentoring scientific careers." The Edelstein-Keshet Prize consists of a cash prize of $500 and a certificate given to the recipient. The winner is expected to give a talk at the Annual Meeting of the Society for Mathematical Biology in Montreal in 2019.

Francis has won the H. D. Landahl Mathematical Biophysics Award. This award recognizes the scientific contributions made by a postdoctoral fellow who is making exceptional scientific contributions to mathematical biology. The award is acknowledged with a certificate, and a cash prize of USD $500.

 

Posted on 26 Sep 2018, 11:03am. Please contact us with feedback and comments about this page.

Oxford Mathematics and the Clay Mathematics Institute Public Lectures: Roger Penrose - Eschermatics WATCH LIVE MONDAY 24th SEPT 5.30PM BST

Oxford Mathematics and the Clay Mathematics Institute Public Lectures

Roger Penrose - Eschermatics

Roger Penrose’s work has ranged across many aspects of mathematics and its applications from his influential work on gravitational collapse to his work on quantum gravity. However, Roger has long had an interest in and influence on the visual arts and their connections to mathematics, most notably in his collaboration with Dutch graphic artist M.C. Escher. In this lecture he will use Escher’s work to illustrate and explain important mathematical ideas.

You can watch live at:

https://www.facebook.com/OxfordMathematics/

OR

https://livestream.com/oxuni/Penrose

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

To whet your appetite here is Roger demonstrating the Impossible Triangle from his 2015 lecture.

Posted on 21 Sep 2018, 7:50pm. Please contact us with feedback and comments about this page.

Martin Bridson appointed President of the Clay Mathematics Institute

Professor Martin R Bridson FRS has been appointed President of the Clay Mathematics Institute from October 1, 2018.  He is the Whitehead Professor of Pure Mathematics at the University of Oxford and a Fellow of Magdalen College.  Until earlier this summer, he was Head of the Mathematical Institute at Oxford.

He studied mathematics as an undergraduate at Hertford College, Oxford, before moving to Cornell in 1986 for his graduate work.  He completed his PhD  there in 1991, under the supervision of Karen Vogtmann, with a thesis on Geodesics and Curvature in Metric Simplicial Complexes.  After appointments at Princeton and at the University of Geneva, he returned to Oxford in 1993 as a Tutorial Fellow of Pembroke College. In 2002, he moved to Imperial College London as Professor of Mathematics and returned again to Oxford in 2007 as Whitehead Professor.  He is a Fellow of the American Mathematical Society (2015) and a Fellow of the Royal Society (2016), to which he was elected "for his leading role in establishing geometric group theory as a major field of mathematics".

Professor Bridson has been recognised for his ground-breaking work on geometry, topology, and group theory in awards from the London Mathematical Society (Whitehead Prize 1999, Forder Lectureship 2005) and from the Royal Society (Wolfson Research Merit Award 2002), and by invitations to speak at the International Congress of Mathematicians in 2006 and to give the Abel Prize Lecture in Oslo in 2009.

Martin succeeds Professor Nick Woodhouse who has been President since 2012.

Posted on 17 Sep 2018, 2:08pm. Please contact us with feedback and comments about this page.

Bach and the Cosmos - James Sparks previews his upcoming Oxford Mathematics Public Lecture with City of London Sinfonia, 9 October

As someone who was drawn to mathematics and music from an early age, the connections between the two have always fascinated me. At a fundamental level the elements of music are governed by mathematics. For example, certain combinations of notes sound 'harmonious' because of the mathematical relationship between the frequencies of the notes. Musical harmony, the subdivision of music into bars and beats, the different permutations and combinations of rhythms, and so on, all give music an inherent mathematical structure. In fact just like mathematics, there is even a special notation used to describe that abstract structure. However, I think there are other, perhaps less obvious, connections. In a sense both mathematics and music are constrained, abstract, logical structures, but within these rigid constraints there is enormous freedom for creativity, with an important role played by both symmetry and beauty.

Mathematicians studying the foundations of mathematics are really studying structure, and the relationships between abstract structures. An equation $A=B$ is of course a statement of a relationship, saying that $A$ and $B$ are equivalent, in whatever sense is intended. It is straightforward enough to start writing down true equations, but this isn't what mathematicians do. Mathematicians seek interesting, elegant, or beautiful equations and structures. There is a strong aesthetic input. The way that mathematicians work, especially in the early stages of an idea, is often non-linear and intuitive, with more linear and methodical reasoning coming later. In music a composer often works in exactly the same way, but they do so for similar reasons: in both cases one is simultaneously trying to create and discover interesting and beautiful structures within a constrained system. Once you start to create, the constraints immediately lead to many consequences - sometimes wonderful consequences, but more often not what you are looking for - and one needs to use intuition to guide this simultaneous process of creation and exploration.

For some mathematicians, the connections between mathematical and musical creative processes extend further still. This was particularly true for Albert Einstein. Remarkably, he said the following about Relativity, his geometrical description of space, time and gravity: "The theory of relativity occurred to me by intuition, and music is the driving force behind this intuition. My parents had me study the violin from the time I was six. My new discovery is the result of musical perception.'' I would love to have been able to ask him more about what he meant by this! His wife Elsa once remarked: "Music helps him when he is thinking about his theories. He goes to his study, comes back, strikes a few chords on the piano, jots something down, returns to his study.'' I do the same when I'm working at home and have always regarded it as mere procrastination, but perhaps there's something deeper going on. The aesthetics one is seeking in mathematics and theoretical physics are common also in music. I think Einstein was looking for simplicity, harmony and beauty in his work, and music was for him an inspiration for this.

The notion of beauty in mathematics is hard to make precise, but for me one aspect of it has something to do with finding simplicity and complexity at the same time. By 'simple' here of course we don't mean trivial, but rather something natural and elegant; and the complexity is often initially hidden, to be uncovered by the mathematician. For example, take group theory, which is the study of symmetry in mathematics. The axioms of group theory are extremely simple, but it took hundreds of mathematicians more than a century to understand and classify the basic building blocks of these structures, which include extraordinarily complicated mathematical objects. To paraphrase the mathematician Richard Borcherds, there is no obvious hint that anything like this level of complexity exists, hidden in the initial definition. This is the sort of thing that mathematicians find beautiful. Of course, symmetries and patterns play a central role in both mathematics and music, and this is perhaps another reason why so many people are attracted to both.

The combination of simplicity, complexity, symmetry and beauty in music reaches a pinnacle in the compositions of Johann Sebastian Bach. Much of Bach's music makes use of counterpoint, where independent melodies are woven together. He often builds large, complex musical works, with many such simultaneous melodies, starting from only a small fragment of a theme. Bach then systematically works through different combinations and permutations, much like a mathematician might, making repeated use of symmetry and patterns. Writing music like this involves a great deal of analytical skill, and is very similar to solving a mathematical problem. Starting with a small, simple idea, and creating/discovering a large structure from it is very appealing to mathematicians - it is elegant. It perhaps also inspired Einstein, who was a great admirer of Bach's music. Bach's genius meant that he was able to use this approach to create beautiful music that also has a more abstract mathematical beauty. For me, it's this combination that makes his music so special.

---

James Sparks and City of London Sinfonia - Bach and the Cosmos

9th October, 7.30pm-9.15pm, Mathematical Institute, Oxford, OX2 6GG

--

James Sparks - Bach and the Cosmos (30 minutes)

City of London Sinfonia - J S Bach arr. Sitkovetsky, Goldberg Variations (70 minutes)

Alexandra Wood - Director/Violin

--

Please email @email to register

Watch live:
https://www.facebook.com/OxfordMathematics
https://www.livestream.com/oxuni/Bach-Cosmos

The Oxford Mathematics Public Lectures are generously supported by XTX Markets

Posted on 27 Aug 2018, 11:12am. Please contact us with feedback and comments about this page.

OMCAN: A new network for mathematical approaches to consciousness research

Oxford Mathematics of Consciousness and Applications Network (OMCAN) is a new network with a focus on bringing mathematics to bear on one of sciences' greatest challenges. 

Over the last few decades scientists from various disciplines have started searching for the general theoretical bases of consciousness and answers to related questions such as how can consciousness be unified with physics, what medical, ethical and commercial benefits might theoretical progress bring, and is there a type of mathematical structure with the property of consciousness. This has resulted in several new mathematically formulated theories (or partial theories) of consciousness, many of which are complementary to each other. Whilst these theories are preliminary, advances in computer science are rapidly being made involving ever more parallel systems, often inspired by biological architectures, which highlights the pressing need for a step change in the level of research being undertaken to establish the general theoretical bases of consciousness.

Oxford Mathematics of Consciousness and Applications Network (OMCAN) provides researchers from across the University of Oxford with the opportunity to share their knowledge in this area, participate in relevant seminars and discussions, and find funding in support of collaborative research. Supported by the Mathematical Physical and Life Sciences Division in Oxford, it will be based at the Mathematical Institute.  

OMCAN is holding its networking launch event on 19th September and you can attend and give a short introduction about yourself and your relevant interests. Please RSVP by 31 August to @email and include up to three slides in pdf format about your relevant research interests.

Prof. Steve Furber (University of Manchester) is giving the OMCAN Inaugural Lecture on 7th November titled 'Biologically-Inspired Massively-Parallel Computation on SpiNNaker (Spiking Neural Network Architecture).

 

Posted on 15 Aug 2018, 10:13am. Please contact us with feedback and comments about this page.