Tue, 24 Nov 2020
14:30
Virtual

“Chiral” field theory, fishnets and integrable spin chains

Stefano Negro
(New York University)
Further Information

Please contact Erik Panzer or Ömer Gürdoğan to be added to the mailing list and receive joining instructions to the online seminar.

Abstract

In this talk I will review the work that has been done by me, N. Gromov, V. Kazakov, G. Korchemsky and G. Sizov on the analysis of fishnet Feynman graphs in a particular scaling limit of $\mathcal N=4$ SYM, a theory dubbed $\chi$FT$_4$. After introducing said theory, in which the Feynman graphs take a very simple fishnet form — in the planar limit — I will review how to exploit integrable techniques to compute these graphs and, consequently, extract the anomalous dimensions of a simple class of operators.

The second in the series of Student Lectures that we are making publicly available this Autumn is from Vicky Neale. Vicky is one of our most popular lecturers and this lecture is from her First Year Analysis course. 

The course introduces students to a rigorous definition of convergence, allowing them to develop their previous understanding of sequences and series and to prove key results about convergence, leading on to subsequent Analysis courses addressing continuity, differentiability and integrability of functions.

Fri, 20 Nov 2020
16:00
Virtual

Polarizations and Symmetries of T[M] theories

Du Pei
(Harvard)
Abstract

I will lead an informal discussion centered on discrete data that need to be specified when reducing 6d relative theories on an internal manifold M and how they determine symmetries of the resulting theory T[M].

Fernando Alday has been appointed Rouse Ball Professor of Mathematics in the University of Oxford. The Rouse Ball Professorship of Mathematics is one of the senior chairs in the Mathematics Department in Oxford (and also in Cambridge). The two positions were founded in 1927 by a bequest from the mathematician W. W. Rouse Ball.

Mon, 18 Jan 2021

16:00 - 17:00

 Machine Learning for Mean Field Games

MATHIEU LAURIERE
(Princeton University)
Abstract

Mean field games (MFG) and mean field control problems (MFC) are frameworks to study Nash equilibria or social optima in games with a continuum of agents. These problems can be used to approximate competitive or cooperative situations with a large finite number of agents. They have found a broad range of applications, from economics to crowd motion, energy production and risk management. Scalable numerical methods are a key step towards concrete applications. In this talk, we propose several numerical methods for MFG and MFC. These methods are based on machine learning tools such as function approximation via neural networks and stochastic optimization. We provide numerical results and we investigate the numerical analysis of these methods by proving bounds on the approximation scheme. If time permits, we will also discuss model-free methods based on extensions of the traditional reinforcement learning setting to the mean-field regime.  

 

 

Subscribe to