A fast iterative PDE-based algorithm for feedback controls of nonsmooth mean- field control problems
Reisinger, C Stockinger, W Zhang, Y SIAM Journal on Scientific Computing
Thu, 09 May 2024
16:00
L5

Random multiplicative functions and non-Gaussian central limit theorem

Mo Dick Wong
(University of Durham)
Abstract

There have been a lot of interests in understanding the behaviour of random multiplicative functions, which are probabilistic models for deterministic arithmetic functions such as the Möbius function and Dirichlet characters. Despite recent advances, the limiting distributions of partial sums of random multiplicative functions remain mysterious even at the conjectural level. In this talk, I shall discuss the so-called $L^2$ regime of twisted sums and provide a precise answer to the distributional problem. This is based on ongoing work with Ofir Gorodetsky.

Tue, 14 May 2024

14:00 - 15:00
L5

Deformations of q-symmetric algebras and log symplectic varieties

Travis Schedler
(Imperial College, London)
Abstract

We consider quadratic deformations of the q-symmetric algebras A_q given by x_i x_j = q_{ij} x_j x_i, for q_{ij} in C*.   We explicitly describe the Hochschild cohomology and compute the weights of the torus action (dilating the x_i variables). We describe new families of filtered deformations of A_q, which are Koszul and Calabi—Yau algebras. This also applies to abelian category deformations of coh(P^n), and for n=3 we give examples having no homogeneous coordinate ring.  We then focus on the case where n is even and the deformations are obtainable from deformation quantisation of toric log symplectic structures on P^n.  In this case we construct formally universal families of quadratic algebras deforming A_q, obtained by tensoring filtered deformations and FeiginOdesskii elliptic algebras. The universality is a consequence of a beautiful combinatorial classification of deformations via "smoothing diagrams", a collection of disjoint cycles and segments in the complete graph on n vertices, viewed as the dual complex for the coordinate hyperplanes in P^{n-1}.  Already for n=5 there are 40 of these, mostly entirely new. Our proof also applies to deformations of Poisson structures, recovering the P^n case of our previous results on general log symplectic varieties with normal crossings divisors, which motivated this project.  This is joint work with Mykola Matviichuk and Brent Pym.

Classical origins of Landau-incompatible transitions
Prakash, A Jones, N Physical Review Letters volume 134 (06 Mar 2025)
Material flow in a silicon furnace
Shirley, M
Tue, 22 Oct 2024
13:00
L2

Heterotic islands

Ida Zadeh
(Southampton)
Abstract

In this talk I will discuss asymmetric orbifolds and will focus on their application to toroidal compactifications of heterotic string theory. I will consider theories in 6 and 4 dimensions with 16 supercharges and reduced rank. I will present a novel formalism, based on the Leech lattice, to construct ‘islands’ without vector multiplets.

Thu, 30 May 2024
12:00
L5

Description of highly symmetric RCD-spaces

Diego Corro
(Cardiff University)
Abstract
RCD-spaces arise naturally from optimal transport theory by the work of Otto-Villanni-Sturm. Moreover, these spaces have a very rich (local) analysis, and several properties of Riemannian manifolds hold for these spaces. But so far the global underlying topological structure of RCD-spaces is not fully understood. 
 
In this talk we consider RCD-spaces with a lot of symmetry, that is a large Lie group acting on it by measure preserving isometries, and fully describe the underlying topological structure. We prove this by taking ideas from optimal transport to construct a canonical space transverse to the orbit. Moreover, I also present a systematic method of constructing such RCD-spaces with high symmetry.
 
This is joint work with Jesús Núñez-Zimbrón and Jaime Santos-Rodríguez.
Multiplicity algebras for rank 2 bundles on curves of small genus
Hitchin, N International Journal of Mathematics volume 35 issue 09 2441011 (17 Aug 2024)
Supersymmetry and the celestial Jacobi identity
Ball, A Spradlin, M Srikant, A Volovich, A Journal of High Energy Physics volume 2024 issue 4 (18 Apr 2024)
Matrix models from black hole geometries
Boido, A Luscher, A Sparks, J Journal of High Energy Physics volume 2024 issue 5 (17 May 2024)
Subscribe to