Thu, 24 Jan 2019

16:00 - 17:00
L3

Instabilities in Blistering

Dr Draga Pihler-Puzović
(University of Manchester)
Abstract

Blisters form when a thin surface layer of a solid body separates/delaminates from the underlying bulk material over a finite, bounded region. It is ubiquitous in a range of industrial applications, e.g. blister test is applied to assess the strength of adhesion between thin elastic films and their solid substrates, and during natural processes, such as formation and spreading of laccoliths or retinal detachment.

We study a special case of blistering, in which a thin elastic membrane is adhered to the substrate by a thin layer of viscous fluid. In this scenario, the expansion of the newly formed blister by fluid injection occurs via a displacement flow, which peels apart the adhered surfaces through a two-way interaction between flow and deformation. If the injected fluid is less viscous than the fluid already occupying the gap, patterns of short and stubby fingers form on the propagating fluid interface in a radial geometry. This process is regulated by membrane compliance, which if increased delays the onset of fingering to higher flow rates and reduces finger amplitude. We find that the morphological features of the fingers are selected in a simple way by the local geometry of the compliant cell. In contrast, the local geometry itself is determined from a complex fluid–solid interaction, particularly in the case of rectangular blisters. Furthermore, changes to the geometry of the channel cross-section in the latter case lead to a rich variety of possible interfacial patterns. Our experiments provide a link between studies of airway reopening, Saffman-Taylor fingering and printer’s instability.   

Amid all the debate about equipping ourselves for the 'technological' world of the future, one thing is for sure: the quality of research in the Mathematical and Life Sciences (and beyond) depends on the quality of its young researchers. In that spirit we are delighted to welcome our latest cohort of DPhil (PhD) students, 43 of them, all fully funded, from across the globe.

Tue, 06 Nov 2018

12:00 - 13:00
C4

The dynamics of the fear of crime

Rafael Prieto Curiel
(University of Oxford)
Abstract

There is a mismatch between levels of crime and its fear and often, cities might see an increase or a decrease in crime over time while the fear of crime remains unchanged. A model that considers fear of crime as an opinion shared by simulated individuals on a network will be presented, and the impact that different distributions of crime have on the fear experienced by the population will be explored. Results show that the dynamics of the fear is sensitive to the distribution of crime and that there is a phase transition for high levels of concentration of crime.

Thu, 21 Feb 2019
17:00
L5

Actions of automorphism groups of omega-categorical structures on compact spaces

David Evans
(Imperial College, London)
Abstract

If G is a topological group, a G-flow X is a non-empty, compact, Hausdorff space on which G acts continuously; it is minimal if all G-orbits are dense. By a theorem of Ellis, there is a (unique) minimal G-flow M(G) which is universal: there is a continuous G-map to every other G-flow. 

Here, we will be interested in the case where G = Aut(K) for some structure K, usually omega-categorical. Work of Kechris, Pestov and Todorcevic and others gives conditions on K under which structural Ramsey Theory (due to Nesetril - Rodl and others) can be used to compute M(G). 

In the first part of the talk I will give a description of the above theory and when it applies (the 'tame case'). In the second part, I will describe joint work with J. Hubicka and J. Nesetril which shows that the omega-categorical structures constructed in the late 1980's by Hrushovski as counterexamples to Lachlan's conjecture are not tame and moreover, minimal flows of their automorphism groups have rather different properties to those in the tame case. 

We invite all to the meetings of Mathematrix. Discussion group about life in academia and matters faced by minorities
Discussion group about life in academia and matters faced by minorities.

Roger Penrose's relationship with the artist M.C. Escher was not just one of mutual admiration. Roger's thinking was consistently influenced by Escher, from the famous Penrose tiling to his groundbreaking work in cosmology. The respect was mutual, as was clear when Roger dropped in to see Escher at his home...

Oxford Mathematics hosted this special event in its Public Lecture series during the conference to celebrate the 20th Anniversary of the foundation of the Clay Mathematics Institute. 

 

 

Subscribe to