Wed, 01 Nov 2017

17:00 - 18:00
L1

Julia Gog - Maths v Disease

Julia Gog
(University of Cambridge)
Abstract

Can mathematics really help us in our fight against infectious disease? Join Julia Gog as we explore some exciting current research areas where mathematics is being used to study pandemics, viruses and everything in between, with a particular focus on influenza.

Julia Gog is Professor of Mathematical Biology, University of Cambridge and David N Moore Fellow at Queens’ College, Cambridge.

Please email: @email to regsiter

Fri, 02 Jun 2017

14:30 - 16:00
L5

Symmetries and Correspondences mini-workshop: Linking numbers and arithmetic duality

Minhyong Kim
(Oxford)
Abstract

Over the last few decades, a number of authors have discussed the analogy between linking numbers in three manifold topology and symbols in arithmetic. This talk will outline some results that make this precise in terms of natural complexes associated to arithmetic duality theorems. In particular, we will describe a ‘finite path integral’ formula for power residue symbols.

Tue, 30 May 2017

15:45 - 16:45
L4

Symmetries in monotone Lagrangian Floer theory

Jack Smith
(Cambridge)
Abstract

Lagrangian Floer cohomology groups are extremely hard compute in most situations. In this talk I’ll describe two ways to extract information about the self-Floer cohomology of a monotone Lagrangian possessing certain kinds of symmetry, based on the closed-open string map and the Oh spectral sequence. The focus will be on a particular family of examples, where the techniques can be combined to deduce some unusual properties.

Tue, 16 May 2017

15:45 - 16:45
L4

Uniruling of symplectic quotients of coisotropic submanifolds

Tobias Sodoge
(UCL)
Abstract


Coisotropic submanifolds arise naturally in symplectic geometry as level sets of moment maps and in algebraic geometry in the context of normal crossing divisors. In examples, the Marsden-Weinstein quotient or (Fano) complete intersections are often uniruled. 
We show that under natural geometric assumptions on a coisotropic submanifold, the symplectic quotient of the coisotropic is always geometrically uniruled. 
I will explain how to assign a Lagrangian and a hypersurface to a fibered, stable coisotropic C. The Lagrangian inherits a fibre bundle structure from C, the hypersurface captures the generalised Reeb dynamics on C. To derive the result, we then adapt and apply techniques from Lagrangian Floer theory and symplectic field theory.
This is joint work with Jonny Evans.
 

Wed, 21 Jun 2017
15:00
S2.37

Post-Quantum Key Exchange from the LWE

Jintai Ding
(University of Cincinnati)
Abstract

In this lecture, we present  practical and provably
secure (authenticated) key exchange protocol and password
authenticated key exchange protocol, which are based on the
learning with errors problems. These protocols are conceptually
simple and have strong provable security properties.
This type of new constructions were started in 2011-2012.
These protocols are shown indeed practical.  We will explain
that all the existing LWE based key exchanges are variants
of this fundamental design.  In addition, we will explain
some issues with key reuse and how to use the signal function
invented for KE for authentication schemes.

Tue, 16 May 2017
14:00
L5

Random functions in Chebfun

Nick Trefethen
(Mathematical Institute)
Abstract

What's the continuous analog of randn?  In recent months I've been exploring such questions with Abdul-Lateef Haji-Ali and other members of the Chebfun team, and Chebfun now has commands randnfun, randnfun2, randnfunsphere, and randnfundisk.  These are based on finite Fourier series with random coefficients, and interesting questions arise in the "white noise" limit as the lengths of the series approaches infinity and as random ODEs become stochastic DEs.    This work is at an early stage and we are grateful for input from stochastic experts at Oxford and elsewhere.

Subscribe to