Fri, 18 Jan 2019

14:00 - 15:00
L1

Whose Maths is it Anyway?

James Munro and Mareli Grady
Abstract

Are you keen to share your love of maths with non-mathematicians, but aren’t sure where to start? Whether you're keen to get involved in outreach activities at Oxford, or you'd just like to explain to your friends and family what you do all term, there's something for everyone in our interactive hour of workshop activities, and lots of laughs along the way. Just bring plenty of enthusiasm, and come prepared with a bit of mathematics you particularly like. 

This session is open to all, and no prior outreach experience is necessary.

Thu, 14 Feb 2019

14:00 - 15:00
L4

Derivation, analysis and approximation of coupled PDEs on manifolds with high dimensionality gap

Prof Paolo Zunino
(Politecnico di Milano)
Abstract

 Multiscale methods based on coupled partial differential equations defined on bulk and embedded manifolds are still poorly explored from the theoretical standpoint, although they are successfully used in applications, such as microcirculation and flow in perforated subsurface reservoirs. This work aims at shedding light on some theoretical aspects of a multiscale method consisting of coupled partial differential equations defined on one-dimensional domains embedded into three-dimensional ones. Mathematical issues arise because the dimensionality gap between the bulk and the inclusions is larger than one, named as the high dimensionality gap case. First, we show that such model derives from a system of full three-dimensional equations, by the application of a topological model reduction approach. Secondly, we rigorously analyze the problem, showing that the averaging operators applied for the model reduction introduce a regularization effect that resolves the issues due to the singularity of solutions and to the ill-posedness of restriction operators. Then, we discretize the problem by means of the finite element method and we analyze the approximation error. Finally, we exploit the structure of the model reduction technique to analyze the modeling error. This study confirms that for infinitesimally small inclusions, the modeling error vanishes.

This is a joint work with Federica Laurino, Department of Mathematics, Politecnico di Milano.

Tue, 22 Jan 2019

12:00 - 13:00
C4

Integrating sentiment and social structure to determine preference alignments: the Irish Marriage Referendum

David O' Sullivan
(Mathematical Institute; University of Oxford)
Abstract

We examine the relationship between social structure and sentiment through the analysis of a large collection of tweets about the Irish Marriage Referendum of 2015. We obtain the sentiment of every tweet with the hashtags #marref and #marriageref that was posted in the days leading to the referendum, and construct networks to aggregate sentiment and use it to study the interactions among users. Our analysis shows that the sentiment of outgoing mention tweets is correlated with the sentiment of incoming mentions, and there are significantly more connections between users with similar sentiment scores than among users with opposite scores in the mention and follower networks. We combine the community structure of the follower and mention networks with the activity level of the users and sentiment scores to find groups that support voting ‘yes’ or ‘no’ in the referendum. There were numerous conversations between users on opposing sides of the debate in the absence of follower connections, which suggests that there were efforts by some users to establish dialogue and debate across ideological divisions. Our analysis shows that social structure can be integrated successfully with sentiment to analyse and understand the disposition of social media users around controversial or polarizing issues. These results have potential applications in the integration of data and metadata to study opinion dynamics, public opinion modelling and polling.

Tue, 22 Jan 2019
16:00
L5

EPPA and RAMSEY

Jaroslav Nesetril
(Charles University, Prague)
Abstract

We survey recent research related to the Extension Property of Partial Isomorhisms (EPPA, also known as Hrushovski property) and, perhaps surprisingly, relate it to structural Ramsey theory.   This is based on a joint work with David Evans, Jan Hubicka and Matej Konecny.
 

Thu, 07 Mar 2019
12:00
L4

Characterizations of Besov spaces via ball averages and Bianchini-type norms

Óscar Domínguez Bonilla
(Universidad Complutense de Madrid)
Abstract

Motivated by recent problems on mixing flows, it is useful to characterize Besov spaces via oscillation of functions (averages) and minimization problems for bounded variation functions (Bianchini-type norms). In this talk, we discuss various descriptions of Besov spaces in terms of different kinds of averages, as well as Bianchini-type norms. Our method relies on the K-functional of the theory of real interpolation. This is a joint work with S. Tikhonov (Barcelona).

Thu, 28 Feb 2019
12:00
L4

A non-linear parabolic PDE with a distributional coefficient and its applications to stochastic analysis

Elena Issolgio
(Leeds University)
Abstract

We consider a non-linear PDE on $\mathbb R^d$ with a distributional coefficient in the non-linear term. The distribution is an element of a Besov space with negative regularity and the non-linearity is of quadratic type in the gradient of the unknown. Under suitable conditions on the parameters we prove local existence and uniqueness of a mild solution to the PDE, and investigate properties like continuity with respect to the initial condition. To conclude we consider an application of the PDE to stochastic analysis, in particular to a class of non-linear backward stochastic differential equations with distributional drivers.

Thu, 21 Feb 2019
12:00
L4

The relationship between failure of a Liouville type theorem and Type I singularities of the Navier-Stokes equations

Tobias Barker
(École Normale Superieure (DMA))
Abstract

In this talk, we demonstrate that formation of Type I singularities of suitable weak solutions of the Navier-Stokes equations occur if there exists non-zero mild bounded ancient solutions satisfying a 'Type I' decay condition. We will also discuss some new Liouville type Theorems. Joint work with Dallas Albritton (University of Minnesota).

Thu, 14 Feb 2019
12:00
L4

The nonlinear Schrödinger problem and its connection with Mean Field Games

Giovanni Conforti
(Ecole Polytechnique (CMAP))
Abstract

In this talk, we study the long time behaviour of a cloud of weakly interacting Brownian particles, conditionally on the observation of their initial and final configuration. In particular, we connect this problem, which may be regarded as a nonlinear version of the Schrödinger problem, to the study of the long time behaviour of Mean Field Games. Combining tools from optimal transport and stochastic control we prove convergence towards the equilibrium configuration and establish convergence rates. A key ingredient to derive these results is a new functional inequality, which generalises Talagrand’s inequality to the entropic transportation cost.

Subscribe to