Wed, 12 Feb 2020
16:00
C1

Generalising Mirzakhani’s curve counting result

Nick Bell
(University of Bristol)
Abstract

On any hyperbolic surface, the number of curves of length at most L is finite. However, it is not immediately clear how quickly this number grows with L. We will discuss Mirzakhani’s breakthrough result regarding the asymptotic behaviour of this number, along with recent efforts to generalise her result using currents.

Mon, 03 Feb 2020
15:45
L6

The complexity of knot genus problem in 3-manifolds

Mehdi Yazdi
(Oxford University)
Abstract

The genus of a knot in a 3-manifold is defined to be the minimum genus of a compact, orientable surface bounding that knot, if such a surface exists. We consider the computational complexity of determining knot genus. Such problems have been studied by several mathematicians; among them are the works of Hass--Lagarias--Pippenger, Agol--Hass--Thurston, Agol and Lackenby. For a fixed 3-manifold the knot genus problem asks, given a knot K and an integer g, whether the genus of K is equal to g. In joint work with Lackenby, we prove that for any fixed, compact, orientable 3-manifold, the knot genus problem lies inNP, answering a question of Agol--Hass--Thurston from 2002. Previously this was known for rational homology 3-spheres by the work of Lackenby.

 

Tue, 28 Jan 2020

12:45 - 14:00
C3

The combined modelling of tumour growth and its environment

Yusuf Al-Husaini
(Brookes University (Oxford))
Abstract

Numerous mathematical models have been proposed for modelling cancerous tumour invasion (Gatenby and Gawlinski 1996), angiogenesis (Owen et al 2008), growth kinetics (Wang et al 2009), response to irradiation (Gao et al 2013) and metastasis (Qiam and Akcay 2018). In this study, we attempt to model the qualitative behavior of growth, invasion, angiogenesis and fragmentation of tumours at the tissue level in an explicitly spatial and continuous manner in two dimensions. We simulate the effectiveness of radiation therapy on a growing tumour in comparison with immunotherapy and propose a novel framework based on vector fields for modelling the impact of interstitial flow on tumour morphology. The results of this model demonstrate the effectiveness of employing a system of partial differential equations along with vector fields for simulating tumour fragmentation and that immunotherapy, when applicable, is substantially more effective than radiation therapy.

Wed, 19 Feb 2020
16:00
C1

Limit Groups and Real Trees

Jonathan Fruchter
(University of Oxford)
Abstract

Limit groups are a powerful tool in the study of free and hyperbolic groups (and even broader classes of groups). I will define limit groups in various ways: algebraic, logical and topological, and draw connections between the different definitions. We will also see how one can equip a limit group with an action on a real tree, and analyze this action using the Rips machine, a generalization of Bass-Serre theory to real trees. As a conclusion, we will obtain that hyperbolic groups whose outer automorphism group is infinite, split non-trivially as graphs of groups.

Tue, 11 Feb 2020

15:30 - 16:30
L3

The Power of Analogy in Physics: From Faraday Waves to Quasicrystals

Ron Lifshitz
(Tel Aviv University)
Abstract

Abstract:

Quasicrystals have been observed recently in soft condensed mater, providing new insight into the ongoing quest to understand their formation and thermodynamic stability. I shall explain the stability of certain soft-matter quasicrystals, using surprisingly simple classical field theories, by making an analogy to Faraday waves. This will provide a recipe for designing pair potentials that yield crystals with (almost) any given symmetry.

Wed, 29 Jan 2020
02:00
N3.12

Introduction to scrolls

Geoffrey Otieno Mboya
((Oxford University))
Abstract

Scrolls play a central role in the construction of varieties; they are ambient spaces for K3 surfaces and Fano 3-folds. In this talk, I will say in two ways what scrolls are and give examples of some embedded varieties in them.

Wed, 04 Mar 2020
16:00
C1

Automorphisms of free groups and train tracks

Monika Kudlinska
(University of Bristol)
Abstract


 Let phi be an outer automorphism of a free group. A topological representative of phi is a marked graph G along with a homotopy equivalence f: G → G which induces the outer automorphism phi on the fundamental group of G. For any given outer automorphism, the choice of topological representative is far from unique. Handel and Bestvina showed that sufficiently nice automorphisms admit a special type of topological representative called a train track map, whose dynamics can be well understood. 
In this talk I will outline the definition and motivation for train tracks, and give a sketch of Handel and Bestvina’s algorithm for finding them.
 

Tue, 04 Feb 2020

12:00 - 13:00
C1

Adaptive biological networks

Mark Fricker and Carlos Aguilar
(Department of Plant Sciences and Freie Universität Berlin)
Abstract

Can spatial fungal networks be informative for both ecology and network science?

Filamentous organisms grow as adaptive biological spatial networks. These networks are in a continuous balance of two main forces: exploration of the habitat to acquire scarce resources, and the transport of those resources within the developing network. In addition, the construction of the network has to be kept a low cost while taking into account the risk of damage by predation. Such network optimization is not unique to biological systems, but is relevant to transport networks across many domains. Thus, this collaborative project between FU-Berlin and University of Oxford represents the beginning of a research program that aims at: First, setting up protocols for the use of network analysis to characterize spatial networks formed by both macroscopic and microscopic filamentous organisms (e.g. Fungi), and determining the fitness and ecological consequences of different structure of the networks. Second, extracting biologically-inspired algorithms that lead to optimized network formation in fungi and discuss their utility in other network domains. This information is critical to demonstrate that we have a viable and scalable pipeline for the measurement of such properties as well provide preliminary evidence of the usefulness of studying network properties of fungi.

Mon, 27 Jan 2020
12:45
L3

The Attractor Mechanism and the Arithmetic of Calabi-Yau Manifolds

Philip Candelas
(Oxford)
Abstract

In the process of studying the zeta-function for one parameter families of Calabi-Yau manifolds we have been led to a manifold, for which the quartic numerator of the zeta-function factorises into two quadrics remarkably often. Among these factorisations, we find persistent factorisations; these are determined by a parameter that satisfies an algebraic equation with coefficients in Q, so independent of any particular prime.  We note that these factorisations are due a splitting of Hodge structure and that these special values of the parameter are rank two attractor points in the sense of IIB supergravity. To our knowledge, these points provide the first explicit examples of non-singular, non-rigid rank two attractor points for Calabi-Yau manifolds of full SU(3) holonomy. Modular groups and modular forms arise in relation to these attractor points in a way that, to a physicist, is unexpected. This is a report on joint work with Xenia de la Ossa, Mohamed Elmi and Duco van Straten.

 

 

Subscribe to