Balancing expressiveness and inexpressiveness in view design
Benedikt, M Bourhis, P Jachiet, L Tsamoura, E ACM Transactions on Database Systems
Balancing expressiveness and inexpressiveness in view design
Benedikt, M Bourhis, P Jachiet, L Tsamoura, E ACM Transactions on Database Systems
Balancing expressiveness and inexpressiveness in view design
Benedikt, M Bourhis, P Jachiet, L Tsamoura, E ACM Transactions on Database Systems
Balancing expressiveness and inexpressiveness in view design
Benedikt, M Bourhis, P Jachiet, L Tsamoura, E ACM Transactions on Database Systems
Balancing expressiveness and inexpressiveness in view design
Benedikt, M Bourhis, P Jachiet, L Tsamoura, E ACM Transactions on Database Systems
Balancing expressiveness and inexpressiveness in view design
Benedikt, M Bourhis, P Jachiet, L Tsamoura, E ACM Transactions on Database Systems

"Historically, mathematics has been a largely male-dominated field, with women in mathematical academia consistently being underrepresented. A report in 2013 by the London Mathematical Society shows some progress has been made in increasing the participation of women in recent times, with the proportion of women pursuing an undergraduate degree in mathematics in the UK standing at around 42%.

Probabilistic distribution functions
Lau, J Binney, J Monthly Notices of the Royal Astronomical Society volume 506 issue 3 4007-4010 (30 Jul 2021)
Tue, 23 Nov 2021
14:00
Virtual

PageRank on directed preferential attachment graph

Mariana Olvera-Cravioto
(UNC Chapel Hill)
Abstract

We study a family of evolving directed random graphs that includes the directed preferential model and the directed uniform attachment model. The directed preferential model is of particular interest since it is known to produce scale-free graphs with regularly varying in-degree distribution. We start by describing the local weak limits for our family of random graphs in terms of randomly stopped continuous-time branching processes, and then use these limits to establish the asymptotic behavior of the corresponding PageRank distribution. We show that the limiting PageRank distribution decays as a power-law in both models, which is surprising for the uniform attachment model where the in-degree distribution has exponential tails. And even for the preferential attachment model, where the power-law hypothesis suggests that PageRank should follow a power-law, our result shows that the two tail indexes are different, with the PageRank distribution having a heavier tail than the in-degree distribution.

Tue, 09 Nov 2021
14:00
Virtual

TBA

Matija Bucić
(Princeton/IAS)
Subscribe to