Tue, 17 May 2016

14:15 - 15:15
L4

Bounds of Minkowski type for finite complex linear groups - the answer to a question of Serre

Michael Collins
(Oxford)
Abstract


In 1878, Jordan showed that there is a function f on the set of natural numbers such that, if $G$ is a finite subgroup of $GL(n,C)$, then $G$ has an abelian normal subgroup of index at most $f(n)$. Early bounds were given by Frobenius and Schur, and close to optimal bounds were given by Weisfeiler in unpublished work in 1984 using the classification of finite simple groups; about ten years ago I obtained the optimal bounds. Crucially, these are "absolute" bounds; they do not address the wider question of divisibility of orders.

In 1887, Minkowski established a bound for the order of a Sylow p-subgroup of a finite subgroup of GL(n,Z). Recently, Serre asked me whether I could obtain Minkowski-like results for complex linear groups, and posed a very specific question. The answer turns out to be no, but his suggestion is actually quite close to the truth, and I shall address this question in my seminar. The answer addresses the divisibility issue in general, and it turns out that a central technical theorem on the structure of linear groups from my earlier work which there was framed as a replacement theorem can be reinterpreted as an embedding theorem and so can be used to preserve divisibility.

Characterization of the atmospheric muon flux in IceCube
Aartsen, M Abraham, K Ackermann, M Adams, J Aguilar, J Ahlers, M Ahrens, M Altmann, D Anderson, T Archinger, M Argüelles, C Arlen, T Auffenberg, J Bai, X Barwick, S Baum, V Bay, R Beatty, J Becker Tjus, J Becker, K Beiser, E BenZvi, S Berghaus, P Berley, D Bernardini, E Bernhard, A Besson, D Binder, G Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, D Bohm, C Börner, M Bos, F Bose, D Böser, S Botner, O Braun, J Brayeur, L Bretz, H Brown, A Buzinsky, N Casey, J Casier, M Cheung, E Chirkin, D Christov, A Christy, B Astroparticle Physics volume 78 1-27 (05 Feb 2016)

People make a city. Each city is as unique as the combination of its inhabitants. Currently, cities are generally categorised by size, but research by Oxford Mathematicians Peter Grindrod and Tamsin Lee on the social networks of different cities shows that City A, which is twice the size of City B, may not necessarily be accurately represented as an amalgamation of two City Bs.

27% of mathematics undergraduates in Oxford are female. We would like the figure to be higher and we are putting a lot of resource in to making it so. However, it is also important that current female and non-binary Oxford mathematicians feel they have time and space to discuss and share experiences that may be specific to them.

Wed, 09 Mar 2016

16:00 - 17:00
C3

Manifolds with odd Euler characteristic

Renee Hoekzema
(Oxford)
Abstract

Orientable manifolds can only have an odd Euler characteristic in dimensions divisible by 4. I will prove the analogous result for spin and string manifolds, where the dimension can only be a multiple of 8 and 16 respectively. The talk will require very little background. I'll go over the definition of spin and string structures, discuss cohomology operations and Poincare duality.

Wed, 09 Mar 2016
15:00
L4

More Efficient Structure-Preserving Signatures: Or Bypassing the Lower Bounds

Essam Ghadafi
(University College London)
Abstract

Structure-preserving signatures are an important cryptographic primitive that is useful for the design of modular cryptographic protocols. In this work, we show how to bypass most of the existing lower bounds in the most efficient Type-III bilinear group setting. We formally define a new variant of structure-preserving signatures in the Type-III setting and present a number of fully secure schemes with signatures half the size of existing ones. We also give different constructions including constructions of optimal one-time signatures. In addition, we prove lower bounds and provide some impossibility results for the variant we define. Finally, we show some applications of the new constructions.

Subscribe to