Adaptive biological networks
Abstract
Can spatial fungal networks be informative for both ecology and network science?
Filamentous organisms grow as adaptive biological spatial networks. These networks are in a continuous balance of two main forces: exploration of the habitat to acquire scarce resources, and the transport of those resources within the developing network. In addition, the construction of the network has to be kept a low cost while taking into account the risk of damage by predation. Such network optimization is not unique to biological systems, but is relevant to transport networks across many domains. Thus, this collaborative project between FU-Berlin and University of Oxford represents the beginning of a research program that aims at: First, setting up protocols for the use of network analysis to characterize spatial networks formed by both macroscopic and microscopic filamentous organisms (e.g. Fungi), and determining the fitness and ecological consequences of different structure of the networks. Second, extracting biologically-inspired algorithms that lead to optimized network formation in fungi and discuss their utility in other network domains. This information is critical to demonstrate that we have a viable and scalable pipeline for the measurement of such properties as well provide preliminary evidence of the usefulness of studying network properties of fungi.
12:45
The Attractor Mechanism and the Arithmetic of Calabi-Yau Manifolds
Abstract
In the process of studying the zeta-function for one parameter families of Calabi-Yau manifolds we have been led to a manifold, for which the quartic numerator of the zeta-function factorises into two quadrics remarkably often. Among these factorisations, we find persistent factorisations; these are determined by a parameter that satisfies an algebraic equation with coefficients in Q, so independent of any particular prime. We note that these factorisations are due a splitting of Hodge structure and that these special values of the parameter are rank two attractor points in the sense of IIB supergravity. To our knowledge, these points provide the first explicit examples of non-singular, non-rigid rank two attractor points for Calabi-Yau manifolds of full SU(3) holonomy. Modular groups and modular forms arise in relation to these attractor points in a way that, to a physicist, is unexpected. This is a report on joint work with Xenia de la Ossa, Mohamed Elmi and Duco van Straten.
The Class Field Tower Problem
Abstract
Given a number field K, it is natural to ask whether it has a finite extension with ideal class number one. This question can be translated into a fundamental question in class field theory, namely the class field tower problem. In this talk, we are going to discuss this problem as well as its solution due to Golod and Shafarevich using methods of group cohomology.
14:00
Edge-sampling and modularity
Abstract
Modularity is a function on graphs which is used in algorithms for community detection. For a given graph G, each partition of the vertices has a modularity score, with higher values indicating that the partition better captures community structure in $G$. The (max) modularity $q^\ast(G)$ of the graph $G$ is defined to be the maximum over all vertex partitions of the modularity score, and satisfies $0 \leq q^\ast(G) \leq 1$.
We analyse when community structure of an underlying graph can be determined from an observed subset of the graph. In a natural model where we suppose edges in an underlying graph $G$ appear with some probability in our observed graph $G'$ we describe how high a sampling probability we need to infer the community structure of the underlying graph.
Joint work with Colin McDiarmid.
16:00
Horocyclic product of Gromov hyperbolic spaces.
Abstract
Gromov hyperbolicity is a property to metric spaces that generalises the notion of negative curvature for manifolds.
After an introduction about these spaces, we will explain the construction of horocyclic products related to lamplighter groups, Baumslag solitar groups and the Sol geometry.
We will describe the shape of geodesics in them, and present rigidity results on their quasi-isometries due to Farb, Mosher, Eskin, Fisher and Whyte.
16:00
Subgroups of direct products of right-angled Artin groups.
Abstract
Right-angled Artin groups (RAAGs) were first introduced in the 70s by Baudisch and further developed in the 80s by Droms.
They have attracted much attention in Geometric Group Theory. One of the many reasons is that it has been shown that all hyperbolic 3-manifold groups are virtually finitely presented subgroups of RAAGs.
In the first part of the talk, I will discuss some of their interesting properties. I will explain some of their relations with manifold groups and their importance in finiteness conditions for groups.
In the second part, I will focus on my PhD project concerning subgroups of direct products of RAAGs.
16:00
Aut(T) has trivial outer automorphism group
Abstract
The automorphism group of a d-regular tree is a topological group with many interesting features. A nice thing about this group is that while some of its features are highly non-trivial (e.g., the existence of infinitely many pairwise non-conjugate simple subgroups), often the ideas involved in the proofs are fairly intuitive and geometric.
I will present a proof for the fact that the outer automorphism group of (Aut(T)) is trivial. This is original joint work with Gil Goffer, but as is often the case in this area, was already proven by Bass-Lubotzky 20 years ago. I will mainly use this talk to hint at how algebra, topology and geometry all play a role when working with Aut(T).
16:00
Whitehead graphs in free groups
Abstract
Whitehead published two papers in 1936 on free groups. Both concerned decision problems for equivalence of (sets of) elements under automorphisms. The first focused on primitive elements (those that appear in some basis), the second looked at arbitrary sets of elements. While both of the resulting algorithms are combinatorial, Whitehead's proofs that these algorithms actually work involve some nice manipulation of surfaces in 3-manifolds. We will have a look at how this works for primitive elements. I'll outline some generalizations due to Culler-Vogtmann, Gertsen, and Stallings, and if we have time talk about how it fits in with some of my current work.