Oxford Mathematician Lukas Brantner explains how generalised Lie algebras lead to new insights in Galois theory, deformation theory, and the theory of configuration spaces. Lukas has just been awarded a Royal Society University Research Fellowship.
14:30
A scalable and robust vertex-star relaxation for high-order FEM
Abstract
The additive Schwarz method with vertex-centered patches and a low-order coarse space gives a p-robust solver for FEM discretizations of symmetric and coercive problems. However, for very high polynomial degree it is not feasible to assemble or factorize the matrices for each patch. In this work we introduce a direct solver for separable patch problems that scales to very high polynomial degree on tensor product cells. The solver constructs a tensor product basis that diagonalizes the blocks in the stiffness matrix for the internal degrees of freedom of each individual cell. As a result, the non-zero structure of the cell matrices is that of the graph connecting internal degrees of freedom to their projection onto the facets. In the new basis, the patch problem is as sparse as a low-order finite difference discretization, while having a sparser Cholesky factorization. We can thus afford to assemble and factorize the matrices for the vertex-patch problems, even for very high polynomial degree. In the non-separable case, the method can be applied as a preconditioner by approximating the problem with a separable surrogate. We apply this approach as a relaxation for the displacement block of mixed formulations of incompressible linear elasticity.
14:00
Numerical approximation of viscous contact problems in glaciology
Abstract
Viscous contact problems describe the time evolution of fluid flows in contact with a surface from which they can detach. These type of problems arise in glaciology when, for example, modelling the evolution of the grounding line of a marine ice sheet or the formation of a subglacial cavity. Such problems are generally modelled as a time dependent viscous Stokes flow with a free boundary and contact boundary conditions. Although these applications are of great importance in glaciology, a systematic study of the numerical approximation of viscous contact problems has not been carried out yet. In this talk, I will present some of the challenges that arise when approximating these problems and some of the ideas we have come up with for overcoming them.