Peristalsis, beading and hexagons: three short stories about elastic instabilities in soft solids
We continue this term with our flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics.
Note the new time of 12:00-13:00 on Thursdays.
This will give an opportunity for the entire community to attend and for speakers with childcare responsibilities to present.
Abstract
This talk will be three short stories on the general theme of elastic
instabilities in soft solids. First I will discuss the inflation of a
cylindrical cavity through a bulk soft solid, and show that such a
channel ultimately becomes unstable to a finite wavelength peristaltic
undulation. Secondly, I will introduce the elastic Rayleigh Plateau
instability, and explain that it is simply 1-D phase separation, much
like the inflationary instability of a cylindrical party balloon. I will
then construct a universal near-critical analytic solution for such 1-D
elastic instabilities, that is strongly reminiscent of the
Ginzberg-Landau theory of magnetism. Thirdly, and finally, I will
discuss pattern formation in layer-substrate buckling under equi-biaxial
compression, and argue, on symmetry grounds, that such buckling will
inevitably produce patterns of hexagonal dents near threshold.