Tue, 09 Feb 2021
12:00

The stability of Kaluza-Klein spacetimes

Zoe Wyatt
(Edinburgh)
Abstract

Spacetimes with compact directions play an important role in supergravity and string theory. The simplest such example is the Kaluza-Klein spacetime, where the compact space is a flat torus. An interesting question to ask is whether this spacetime, when viewed as an initial value problem, is stable to small perturbations of initial data. In this talk I will discuss the global, non-linear stability of the Kaluza-Klein spacetime to toroidal-independent perturbations and the particular nonlinear structure appearing in the associated PDE system.

Tue, 09 Mar 2021
12:00
Virtual

The gravitational spin Hall effect

Lars Andersson
(Albert Einstein Institute)
Abstract

The propagation of high-frequency electromagnetic waves can be analyzed using the geometrical optics approximation. In the case of large but finite frequencies, the geometrical optics approximation is no longer accurate, and polarization-dependent corrections at first order in wavelength modify the propagation of light in an inhomogenous medium via a spin-orbit coupling mechanism. This effect, known as the spin Hall effect of light, has been experimentally observed. In this talk I will discuss recent work which generalizes the spin Hall effect to the propagation of light and gravitational waves in inhomogenous spacetimes. This is based on joint work with Marius Oancea and Jeremie Joudioux.

Tue, 26 Jan 2021
12:00

New results for gravitational binary dynamics from QFT amplitudes

Mao Zeng
(Oxford (Theoretical Physics))
Abstract

Precision predictions for binary mergers are essential for the nascent field of gravitational wave astronomy. The initial inspiral part can be treated perturbatively. We present results for the post-Minkowskian expansion of conservative binary dynamics, previously available only at the 2nd order for several decades, at the 3rd and 4th orders in the expansion. Our calculations are based on quantum field theory and use powerful methods developed in the modern scattering amplitudes program, as well as loop integration techniques developed for precision collider physics. Furthermore, we take initial steps in calculating radiative binary dynamics and obtain analytically the total radiated energy in hyperbolic black hole scattering, at the lowest order in G but all orders in velocity.

Mon, 08 Mar 2021
14:15
Virtual

The spine of the T-graph of the Hilbert scheme

Diane MacLagan
(University of Warwick)
Abstract

The torus T of projective space also acts on the Hilbert
scheme of subschemes of projective space, and the T-graph of the
Hilbert scheme has vertices the fixed points of this action, and edges
the closures of one-dimensional orbits. In general this graph depends
on the underlying field. I will discuss joint work with Rob
Silversmith, in which we construct of a subgraph, which we call the
spine, of the T-graph of Hilb^N(A^2) that is independent of the choice
of field. The key technique is an understanding of the tropical ideal,
in the sense of tropical scheme theory, of the ideal of the universal
family of an edge in the spine.

Mon, 01 Mar 2021
14:15
Virtual

Homological mirror symmetry for genus two curves

Catherine Cannizzo
(Stony Brook University)
Abstract

We prove a homological mirror symmetry result for a one-parameter family of genus 2 curves (https://arxiv.org/abs/1908.04227), and then mention current joint work with H. Azam, H. Lee, and C.-C. M. Liu on generalizing this to the 6-parameter family of all genus 2 curves.

First we describe the B-model genus 2 curve in a 4-torus and the geometric construction of the generalized SYZ mirror. Then we set up the Fukaya-Seidel category on the mirror. Finally we will see the main algebraic HMS result on homogenous coordinate rings, which is at the level of cohomology. The method involves first considering mirror symmetry for the 4-torus, then restricting to the hypersurface genus 2 curve and extending to a mirror Landau-Ginzburg model with fiber the mirror 4-torus. 

Mon, 22 Feb 2021
14:15
Virtual

Spaces of metrics of positive scalar curvature on manifolds with boundary

Christian Bär
(University of Potsdam)
Abstract

Unlike for closed manifolds, the existence of positive scalar curvature (psc) metrics on connected manifolds with
nonempty boundary is unobstructed. We study and compare the spaces of psc metrics on such manifolds with various
conditions along the boundary: H ≥ 0, H = 0, H > 0, II = 0, doubling, product structure. Here H stands for the
mean curvature of the boundary and II for its second fundamental form. "Doubling" means that the doubled metric
on the doubled manifold (along the boundary) is smooth and "product structure" means that near the boundary the
metric has product form. We show that many, but not all of the obvious inclusions are weak homotopy equivalences.
In particular, we will see that if the manifold carries a psc metric with H ≥ 0, then it also carries one which is
doubling but not necessarily one which has product structure. This is joint work with Bernhard Hanke.

Mon, 15 Feb 2021
14:15
Virtual

Weightings and normal forms

Eckhard Meinrenken
(University of Toronto)
Abstract

The idea of assigning weights to local coordinate functions is used in many areas of mathematics, such as singularity theory, microlocal analysis, sub-Riemannian geometry, or the theory of hypo-elliptic operators, under various terminologies. In this talk, I will describe some differential-geometric aspects of weightings along submanifolds. This includes a coordinate-free definition, and the construction of weighted normal bundles and weighted blow-ups. As an application, I will describe a canonical local model for isotropic embeddings in symplectic manifolds. (Based on joint work with Yiannis Loizides.)

Mon, 08 Feb 2021
14:15
Virtual

Punctured invariants and gluing

Dan Abramovich
(Brown University)
Abstract
Associativity in quantum cohomology is proven using a gluing formula for Gromov-Witten invariants. The gluing formula underlying orbifold quantum cohomology has additional interesting features. The Gross-Siebert program requires an analogue of quantum cohomology in logarithmic geometry, with underlying gluing formula for punctured logarithmic invariants. I'll attempt to explain how this works and what new subtle features arise. This is based on joint work with Q. Chen, M. Gross and B. Siebert (https://arxiv.org/pdf/2009.07720.pdf).
Mon, 01 Feb 2021
14:15
Virtual

Leaf decompositions in Euclidean spaces

Krzysztof Ciosmak
(Oxford)
Abstract

In the talk I shall discuss an approach to the localisation technique, for spaces satisfying the curvature-dimension condition, by means of L1-optimal transport. Moreover, I shall present recent work on a generalisation of the technique to multiple constraints setting. Applications of the theory lie in functional and geometric inequalities, e.g. in the Lévy-Gromov isoperimetric inequality.

Subscribe to