Fri, 15 May 2020

15:00 - 16:00
Virtual

From dynamics to combinatorics and back again

Kelly Spendlove
(Oxford)
Abstract

The last fifty years of dynamical systems theory have established that dynamical systems can exhibit extremely complex behavior with respect to both the system variables (chaos theory) and parameters (bifurcation theory). Such complex behavior found in theoretical work must be reconciled with the capabilities of the current technologies available for applications. For example, in the case of modelling biological phenomena, measurements may be of limited precision, parameters are rarely known exactly and nonlinearities often cannot be derived from first principles. 

The contrast between the richness of dynamical systems and the imprecise nature of available modeling tools suggests that we should not take models too seriously. Stating this a bit more formally, it suggests that extracting features which are robust over a range of parameter values is more important than an understanding of the fine structure at some particular parameter.

The goal of this talk is to present a high-level introduction/overview of computational Conley-Morse theory, a rigorous computational approach for understanding the global dynamics of complex systems.  This introduction will wander through dynamical systems theory, algebraic topology, combinatorics and end in game theory.

Mon, 15 Jun 2020

16:00 - 17:00

Local stochastic volatility and the inverse of the Markovian projection

Mykhaylo Shkolnikov
(Princeton University)
Abstract

 

Abstract: The calibration problem for local stochastic volatility models leads to two-dimensional stochastic differential equations of McKean-Vlasov type. In these equations, the conditional distribution of the second component of the solution given the first enters the equation for the first component of the solution. While such equations enjoy frequent application in the financial industry, their mathematical analysis poses a major challenge. I will explain how to prove the strong existence of stationary solutions for these equations, as well as the strong uniqueness in an important special case. Based on joint work with Daniel Lacker and Jiacheng Zhang.  
 

Oxford Mathematician Ben Green on how and why he has been pondering footballs in high dimensions.

"A 3-dimensional football is usually a truncated icosahedron. This solid has the virtue of being pleasingly round, hence its widespread use as a football. It is also symmetric in the sense that there is no way to tell two different vertices apart: more mathematically, there is a group of isometries of $\mathbf{R}^3$ acting transitively on the vertices.

Thu, 21 May 2020
11:30

Sets, groups, and fields definable in vector spaces with a bilinear form

Jan Dobrowolski
(Leeds University)
Abstract

 I will report on my recent work on dimension, definable groups, and definable fields in vector spaces over algebraically closed [real closed] fields equipped with a non-degenerate alternating bilinear form or a non-degenerate [positive-definite] symmetric bilinear form. After a brief overview of the background, I will discuss a notion of dimension and some other ingredients of the proof of the main result, which states that, in the above context, every definable group is (algebraic-by-abelian)-by-algebraic [(semialgebraic-by-abelian)-by-semialgebraic]. It follows from this result that every definable field is definable in the field of scalars, hence either finite or definably isomorphic to it [finite or algebraically closed or real closed].
 

Mon, 18 May 2020

16:00 - 17:00

The functional Breuer-Major theorem

Ivan Nourdin
(University of Luxembourg)
Abstract


Let ?={??}?∈ℤ be zero-mean stationary Gaussian sequence of random variables with covariance function ρ satisfying ρ(0)=1. Let φ:R→R be a function such that ?[?(?_0)2]<∞ and assume that φ has Hermite rank d≥1. The celebrated Breuer–Major theorem asserts that, if ∑|?(?)|^?<∞ then
the finite dimensional distributions of the normalized sum of ?(??) converge to those of ?? where W is
a standard Brownian motion and σ is some (explicit) constant. Surprisingly, and despite the fact this theorem has become over the years a prominent tool in a bunch of different areas, a necessary and sufficient condition implying the weak convergence in the
space ?([0,1]) of càdlàg functions endowed with the Skorohod topology is still missing. Our main goal in this paper is to fill this gap. More precisely, by using suitable boundedness properties satisfied by the generator of the Ornstein–Uhlenbeck semigroup,
we show that tightness holds under the sufficient (and almost necessary) natural condition that E[|φ(X0)|p]<∞ for some p>2.

Joint work with D Nualart
 

Thu, 11 Jun 2020

14:00 - 15:00

Dense networks that do not synchronize and sparse ones that do.

Alex Townsend
(Cornell)
Abstract

Consider a network of identical phase oscillators with sinusoidal coupling. How likely are the oscillators to globally synchronize, starting from random initial phases? One expects that dense networks have a strong tendency to synchronize and the basin of attraction for the synchronous state to be the whole phase space. But, how dense is dense enough? In this (hopefully) entertaining Zoom talk, we use techniques from numerical linear algebra and computational Algebraic geometry to derive the densest known networks that do not synchronize and the sparsest networks that do. This is joint work with Steven Strogatz and Mike Stillman.


[To be added to our seminars mailing list, or to receive a Zoom invitation for a particular seminar, please contact @email.]

Thu, 04 Jun 2020

14:00 - 15:00

Do Galerkin methods converge for the classical 2nd kind boundary integral equations in polyhedra and Lipschitz domains?

Simon Chandler-Wilde
(Reading University)
Abstract

The boundary integral equation method is a popular method for solving elliptic PDEs with constant coefficients, and systems of such PDEs, in bounded and unbounded domains. An attraction of the method is that it reduces solution of the PDE in the domain to solution of a boundary integral equation on the boundary of the domain, reducing the dimensionality of the problem. Second kind integral equations, featuring the double-layer potential operator, have a long history in analysis and numerical analysis. They provided, through C. Neumann, the first existence proof to the Laplace Dirichlet problem in 3D, have been an important analysis tool for PDEs through the 20th century, and are popular computationally because of their excellent conditioning and convergence properties for large classes of domains. A standard numerical method, in particular for boundary integral equations, is the Galerkin method, and the standard convergence analysis starts with a proof that the relevant operator is coercive, or a compact perturbation of a coercive operator, in the relevant function space. A long-standing open problem is whether this property holds for classical second kind boundary integral equations on general non-smooth domains. In this talk we give an overview of the various concepts and methods involved, reformulating the problem as a question about numerical ranges. We solve this open problem through counterexamples, presenting examples of 2D Lipschitz domains and 3D Lipschitz polyhedra for which coercivity does not hold. This is joint work with Prof Euan Spence, Bath.

 

[To be added to our seminars mailing list, or to receive a Zoom invitation for a particular seminar, please contact @email.]

Subscribe to