12:45
Gauge Theory and Boundary Integrability
Abstract
Costello Yamazaki and Witten have proposed a new understanding of quantum integrable systems coming from a variant of Chern-Simons theory living on a product of two Riemann surfaces. I’ll review their work, and show how it can be extended to the case of integrable systems with boundary. The boundary Yang-Baxter Equations, twisted Yangians and Sklyanin determinants all have natural interpretations in terms of line operators in the theory.
12:45
The Laplacian flow in G_2 geometry
Abstract
Finding Riemannian metrics with holonomy G_2 is a challenging problem with links in mathematics to Einstein metrics and area-minimizing submanifolds, and to M-theory in theoretical physics. I will provide a brief survey on recent progress towards studying this problem using a geometric flow approach, including connections to calibrated fibrations.
The Oxford Mathematics educational experience is a journey, a journey like any other educational experience. It builds on what you learn at school. It is not unfamiliar and we don't want it to invisible. But it has aspects that are different. One of these is the tutorial system. Students have lectures. But they also have tutorials based on those lectures where they sit, usually in pairs, with a tutor, go through their work and, critically, get to ask questions. It is their tutorial.
Multispectral snapshot demosaicing via non-convex matrix completion
Abstract
Snapshot mosaic multispectral imagery acquires an undersampled data cube by acquiring a single spectral measurement per spatial pixel. Sensors which acquire p frequencies, therefore, suffer from severe 1/p undersampling of the full data cube. We show that the missing entries can be accurately imputed using non-convex techniques from sparse approximation and matrix completion initialised with traditional demosaicing algorithms.
Mechano-electrophysiological coupling in axonal membrane: theory, controversy and neuromodulation
Virtual fibring of manifolds and groups
Abstract
I will discuss Agol's proof of the Virtually Fibred Conjecture of
Thurston, focusing on the role played by the `RFRS' property. I will
then show how one can modify parts of Agol's proof by replacing some
topological considerations with a group theoretic statement about
virtual fibring of RFRS groups.
The concept of equilibrium is one of the most central ideas in economics. It is one of the core assumptions in the vast majority of economic models, including models used by policymakers on issues ranging from monetary policy to climate change, trade policy and the minimum wage. But is it a good assumption?