Neutrino astronomy with the next generation IceCube Neutrino Observatory
Ackermann, M Adams, J Aguilar, J Ahlers, M Ahrens, M Alispach, C Andeen, K Anderson, T Ansseau, I Anton, G Argüelles, C Arlen, T Auffenberg, J Axani, S Backes, P Bagherpour, H Bai, X Barbano, A Bartos, I Bastian, B Baum, V Baur, S Bay, R Beatty, J Becker, K Tjus, J BenZvi, S Berley, D Bernardini, E Besson, D Binder, G Bindig, D Blaufuss, E Blot, S Bohm, C Bohmer, M Börner, M Böser, S Botner, O Böttcher, J Bourbeau, E Bourbeau, J Bradascio, F Braun, J Bron, S Brostean-Kaiser, J Burgman, A Buscher, J
Design and Performance of the first IceAct Demonstrator at the South
Pole
Sullivan, G Taboada, I Taketa, A Ter-Antonyan, S Tanaka, H Tenholt, F Terliuk, A Tilav, S Tollefson, K Tomankova, L Tönnis, C Toscano, S Tosi, D Tselengidou, M Turcati, A Trettin, A Tung, C Turcotte, R Turley, C Elorrieta, M Ty, B Unger, E Vandenbroucke, J Usner, M Driessche, W Journal of Instrumentation (04 Feb 2020)
Wed, 20 Nov 2019
15:00
N3.12

The Stacks Project (abridged/bowdlerized)

Jay Swar
(Oxford University)
Abstract

In this talk, I will introduce the notion of a sheaf on a topological space. I will then explain why "topological spaces" are an artificial limitation on enjoying life (esp. cohomology) to the fullest and what to do about that (answer: sites). Sheaves also fail our needs, but they have a suitable natural upgrade (i.e. stacks).
This talk will be heavily peppered with examples that come from the world around you (music, torsors, etc.).
 

Thu, 28 Nov 2019

16:00 - 17:00
L4

The Systemic Implications of the Bail-In Design

Alissa Kleinnijenhuis
(Oxford University)
Abstract

The 2007-2008 financial crisis forced governments to choose between the unattractive alternatives of either bailing out a systemically important bank (SIBs) or having it fail in a disruptive manner. Bail-in has been put forward as the primary tool to resolve a failing bank, which would end the too-big-to-fail problem by letting stakeholders shoulder the losses, while minimising the calamitous systemic impact of a bank failure. Though the aptness of bail-in has been evinced in relatively minor idiosyncratic bank failures, its efficacy in maintaining stability in cases of large bank failures and episodes of system-wide crises remains to be practically tested. This paper investigates the financial stability implications of the bail-in design, in all these cases. We develop a multi-layered network model of the European financial system that captures the prevailing endogenous-amplification mechanisms: exposure loss contagion, overlapping portfolio contagion, funding contagion, bail-inable debt revaluations, and bail-inable debt runs. Our results reveal that financial stability hinges on a set of `primary' and `secondary' bail-in parameters, including the failure threshold, recapitalisation target, debt-to-equity conversion rate, loss absorption requirements, debt exclusions and bail-in-design certainty – and we uncover how. We also demonstrate that the systemic footprint of the bail-in design is not properly understood without the inclusion of multiple contagion mechanisms and non-banks. Our evidence fortunately suggests that the pivot for stability is in the hands of policymakers. It also suggests, however, that the current bail-in design might be in the regime of instability.

Tue, 19 Nov 2019

12:45 - 14:00
C5

Droplet impact on deformable substrates: A combined theoretical and computational approach

Michael Negus
((Oxford University))
Abstract

Recent advances in experimental imaging techniques have allowed us to observe the fine details of how droplets behave upon impact onto a substrate. However, these are highly non-linear, multiscale phenomena and are thus a formidable challenge to model. In addition, when the substrate is deformable, such as an elastic sheet, the fluid-structure interaction introduces an extra layer of complexity.

We present two modeling approaches for droplet impact onto deformable substrates: matched asymptotics and direct numerical simulations. In the former, we use Wagner's theory of impact to derive analytical expressions which approximate the behavior during the early time of impact. In the latter, we use the open source volume-of-fluid code Basilisk to conduct simulations designed to give insight into the later times of impact.

We conclude by showing how these methods are complementary, and a combination of both can give a thorough understanding of the droplet impact across timescales. 

Thu, 16 Jan 2020

16:00 - 17:00
L4

PRICING OF COUNTERPARTY RISK AND FUNDING WITH CSA DISCOUNTING, PORTFOLIO EFFECTS AND INITIAL MARGIN.

Alessandro Gnoatto
(Universita degli studi di Verona)
Abstract


In this paper we extend the existing literature on xVA along three directions. First, we enhance current BSDE-based xVA frameworks to include initial margin by following the approach of Crépey (2015a) and Crépey (2015b). Next, we solve the consistency problem that arises when the front- office desk of the bank uses trade-specific discount curves that differ from the discount curve adopted by the xVA desk. Finally, we address the existence of multiple aggregation levels for contingent claims in the portfolio between the bank and the counterparty, providing suitable extensions of our proposed single-claim xVA framework. 

This is a joint work with: Francesca Biagini and Immacolata Oliva

Preprint available at: https://arxiv.org/abs/1905.11328

Thu, 14 Nov 2019

16:00 - 17:30
C5

Vertex algebras and the homology of moduli stacks

Jacob Gross
Abstract

Recently, Joyce constructed a Ringel-Hall style graded vertex algebra on the homology of moduli stacks of objects in certain categories of algebro-geometric and representation-theoretic origin. The construction is most natural for 2n-Calabi-Yau categories. We present this construction and explain the geometric reason why it exists. If time permits, we will explain how to compute the homology of the moduli stack of objects in the derived category of a smooth complex projective variety and to identify it with a lattice-type vertex algebra.

Tue, 11 Feb 2020

12:00 - 13:00
C1

The modelling power of random graphs

Ivan Kryven
(Universiteit Utrecht)
Abstract

Random graphs were introduced as a convenient example for demonstrating the impossibility of ‘complete disorder’ by Erdos, who also thought that these objects will never become useful in the applied areas outside of pure mathematics. In this talk, I will view random graphs as objects in the field of applied mathematics and discus how the application-driven objectives have set new directions for studying random graphs. I will focus on characterising the sizes of connected components in graphs with a given degree distribution, on the percolation-like processes on such structures, and on generalisations to the coloured graphs. These theoretical questions have interesting implications for studying resilience of networks with nontrivial structures, and for materials science where they explain kinetics-driven phase transitions. Even more surprisingly, the results reveal intricate connections between random graphs and non-linear partial differential equations indicating new possibilities for their analysis.

Tue, 03 Mar 2020

12:00 - 13:00
C1

Dynamic approaches to measure heterogeneity in spatial networks

Vincenzo Nicosia
(Queen Mary University)
Abstract

Spatial networks are often the most natural way to represent spatial information of different kinds. One of the outstanding problems in current spatial network research is to effectively quantify the heterogeneity of the discrete-valued spatial distributions underlying a spatial graph. In this talk we will presentsome recent alternative approaches to estimate heterogeneity in spatial networks based on simple dynamical processes running on them.

Subscribe to