Fine properties of fractional Brownian motions on Wiener space
Abstract
We study several important fine properties for the family of fractional Brownian motions with Hurst parameter H under the (p,r)-capacity on classical Wiener space introduced by Malliavin. We regard fractional Brownian motions as Wiener functionals via the integral representation discovered by Decreusefond and \"{U}st\"{u}nel, and show non differentiability, modulus of continuity, law of iterated Logarithm(LIL) and self-avoiding properties of fractional Brownian motion sample paths using Malliavin calculus as well as the tools developed in the previous work by Fukushima, Takeda and etc. for Brownian motion case.