Data with Neutrino-count Statistics
Data with Neutrino-count Statistics
Combinatorial anabelian geometry and its applications
Abstract
Combinatorial anabelian geometry is a modern branch of anabelian geometry which deals with those aspects of anabelian geometry which manifest themselves over algebraically closed fields of characteristic zero. The origin of combinatorial anabelian geometry is in S. Mochizuki’s pioneering papers from 2007, in which he reinterpreted and generalised some key components of his earlier famous proof of the Grothendieck conjecture. S. Mochizuki discovered that one can separate arguments which work over algebraically closed fields from arithmetic arguments, and study the former by using combinatorial methods. This led to a very nontrivial development of the theory of combinatorial anabelian geometry by S. Mochizuki and Y. Hoshi and other mathematicians. In this talk, after introducing the theory of combinatorial anabelian geometry I will discuss applications of combinatorial anabelian geometry to the study of the absolute Galois group of number fields and of p-adic local fields and to the study of the Grothendieck-Teichmueller group. In particular, I will talk about the recent construction of a splitting of the natural inclusion of the absolute Galois group of p-adic numbers to the (largest) p-adic Grothendieck–Teichmueller group and a splitting of the natural embedding of the absolute Galois group of rationals into the commensurator of the absolute Galois group of the maximal abelian extension of rationals in the Grothendieck–Teichmueller group.
Simplicity and Complexity of Belief-Propagation
This Colloquium is taking place in the Department of Statistics on St Giles'.
Abstract
There is a very simple algorithm for the inference of posteriors for probability models on trees. This algorithm, known as "Belief Propagation" is widely used in coding theory, in machine learning, in evolutionary inference, among many other areas. The talk will be devoted to the analysis of Belief Propagation in some of the simplest probability models. We will highlight the interplay between Belief Propagation, linear estimators (statistics), the Kesten-Stigum bound (probability) and Replica Symmetry Breaking (statistical physics). We will show how the analysis of Belief Propagation allowed proof phase transitions for phylogenetic reconstruction in evolutionary biology and developed optimal algorithms for inference of block models. Finally, we will discuss the computational complexity of this 'simple' algorithm.
Computational boundary element methods with Bempp
Abstract
Boundary integral equations are an elegant tool to model and simulate a range of physical phenomena in bounded and unbounded domains.
While mathematically well understood, the numerical implementation (e.g. via boundary element methods) still poses a number of computational challenges, from the efficient assembly of the underlying linear systems up to the fast preconditioned solution in complex applications. In this talk we provide an overview of some of these challenges and demonstrate the efficient implementation of boundary element methods on modern CPU and GPU architectures. As part of the talk we will present a number of practical examples using the Bempp-cl boundary element software, our next generation boundary element package, that has been developed in Python and supports modern vectorized CPU instruction sets and a number of GPU types.
Minimizing convex quadratics with variable precision Krylov methods
Abstract
Iterative algorithms for the solution of convex quadratic optimization problems are investigated, which exploit inaccurate matrix-vector products. Theoretical bounds on the performance of a Conjugate Gradients method are derived, the necessary quantities occurring in the theoretical bounds estimated and a new practical algorithm derived. Numerical experiments suggest that the new method has significant potential, including in the steadily more important context of multi-precision computations.
Krylov methods for the solution of the nonlinear eigenvalue problem
Abstract
Everybody is familiar with the concept of eigenvalues of a matrix. In this talk, we consider the nonlinear eigenvalue problem. These are problems for which the eigenvalue parameter appears in a nonlinear way in the equation. In physics, the Schroedinger equation for determining the bound states in a semiconductor device, introduces terms with square roots of different shifts of the eigenvalue. In mechanical and civil engineering, new materials often have nonlinear damping properties. For the vibration analysis of such materials, this leads to nonlinear functions of the eigenvalue in the system matrix.
One particular example is the sandwhich beam problem, where a layer of damping material is sandwhiched between two layers of steel. Another example is the stability analysis of the Helmholtz equation with a noise excitation produced by burners in a combustion chamber. The burners lead to a boundary condition with delay terms (exponentials of the eigenvalue).
We often receive the question: “How can we solve a nonlinear eigenvalue problem?” This talk explains the different steps to be taken for using Krylov methods. The general approach works as follows: 1) approximate the nonlinearity by a rational function; 2) rewrite this rational eigenvalue problem as a linear eigenvalue problem and then 3) solve this by a Krylov method. We explain each of the three steps.
On the preconditioning of coupled multi-physics problems
Abstract
The fully coupled numerical simulation of different physical processes, which can typically occur
at variable time and space scales, is often a very challenging task. A common feature of such models is that
their discretization gives rise to systems of linearized equations with an inherent block structure, which
reflects the properties of the set of governing PDEs. The efficient solution of a sequence of systems with
matrices in a block form is usually one of the most time- and memory-demanding issue in a coupled simulation.
This effort can be carried out by using either iteratively coupled schemes or monolithic approaches, which
tackle the problem of the system solution as a whole.
This talk aims to discuss recent advances in the monolithic solution of coupled multi-physics problems, with
application to poromechanical simulations in fractured porous media. The problem is addressed either by proper
sparse approximations of the Schur complements or special splittings that can partially uncouple the variables
related to different physical processes. The selected approaches can be included in a more general preconditioning
framework that can help accelerate the convergence of Krylov subspace solvers. The generalized preconditioner
relies on approximately decoupling the different processes, so as to address each single-physics problem
independently of the others. The objective is to provide an algebraic framework that can be employed as a
general ``black-box'' tool and can be regarded as a common starting point to be later specialized for the
particular multi-physics problem at hand.
Numerical experiments, taken from real-world examples of poromechanical problems and fractured media, are used to
investigate the behaviour and the performance of the proposed strategies.
A posteriori error analysis for domain decomposition
Abstract
Domain decomposition methods are widely employed for the numerical solution of partial differential equations on parallel computers. We develop an adjoint-based a posteriori error analysis for overlapping multiplicative Schwarz domain decomposition and for overlapping additive Schwarz. In both cases the numerical error in a user-specified functional of the solution (quantity of interest), is decomposed into a component that arises due to the spatial discretization and a component that results from of the finite iteration between the subdomains. The spatial discretization error can be further decomposed in to the errors arising on each subdomain. This decomposition of the total error can then be used as part of a two-stage approach to construct a solution strategy that efficiently reduces the error in the quantity of interest.
On coarse spaces for solving the heterogenous Helmholtz equation with domain decomposition methods
Abstract
The development of effective solvers for high frequency wave propagation problems, such as those described by the Helmholtz equation, presents significant challenges. One promising class of solvers for such problems are parallel domain decomposition methods, however, an appropriate coarse space is typically required in order to obtain robust behaviour (scalable with respect to the number of domains, weakly dependant on the wave number but also on the heterogeneity of the physical parameters). In this talk we introduce a coarse space based on generalised eigenproblems in the overlap (GenEO) for the Helmholtz equation. Numerical results within FreeFEM demonstrate convergence that is effectively independent of the wave number and contrast in the heterogeneous coefficient as well as good performance for minimal overlap.
Reliable Real Computing
Abstract
Can we get rigorous answers when computing with real and complex numbers? There are now many applications where this is possible thanks to a combination of tools from computer algebra and traditional numerical computing. I will give an overview of such methods in the context of two projects I'm developing. The first project, Arb, is a library for arbitrary-precision ball arithmetic, a form of interval arithmetic enabling numerical computations with rigorous error bounds. The second project, Fungrim, is a database of knowledge about mathematical functions represented in symbolic form. It is intended to function both as a traditional reference work and as a software library to support symbolic-numeric methods for problems involving transcendental functions. I will explain a few central algorithmic ideas and explain the research goals of these projects.