Tue, 12 Jun 2018

15:00 - 16:15
C2

Subriemannian metrics and the metrizability of parabolic geometries

Prof Jan Slovak
(Brno)
Abstract

We present the linearized metrizability problem in the context of parabolic geometries and subriemannian geometry, generalizing the metrizability problem in projective geometry studied by R. Liouville in 1889. We give a general method for linearizability and a classification of all cases with irreducible defining distribution where this method applies. These tools lead to natural subriemannian metrics on generic distributions of interest in geometric control theory.

Fri, 15 Jun 2018

15:00 - 16:00
L6

"A counterexample to the first Zassenhaus conjecture".

Florian Eisele
(City University London)
Abstract

There are many interesting problems surrounding the unit group U(RG) of the ring RG, where R is a commutative ring and G is a finite group. Of particular interest are the finite subgroups of U(RG). In the seventies, Zassenhaus conjectured that any u in U(ZG) is conjugate, in the group U(QG), to an element of the form +/-g, where g is an element of the group G. This came to be known as the "(first) Zassenhaus conjecture". I will talk about the recent construction of a counterexample to this conjecture (this is joint work with L. Margolis), and recent work on related questions in the modular representation theory of finite groups.

Tue, 12 Jun 2018

12:45 - 13:30
C5

Scalable Least-Squares Minimisation for Bundle Adjustment Problems

Lindon Roberts
Abstract

Structure from Motion (SfM) is a problem which asks: given photos of an object from different angles, can we reconstruct the object in 3D? This problem is important in computer vision, with applications including urban planning and autonomous navigation. A key part of SfM is bundle adjustment, where initial estimates of 3D points and camera locations are refined to match the images. This results in a high-dimensional nonlinear least-squares problem. In this talk, I will discuss how dimensionality reduction methods such as block coordinates and sketching can be used to improve solver scalability for bundle adjustment problems.

Fri, 15 Jun 2018

12:00 - 13:00
C6

Character correspondences for symmetric and complex reflection groups.

Eugenio Giannelli
(University of Cambridge)
Abstract

Abstract: In 2016 Ayyer, Prasad and Spallone proved that the restriction to 
S_{n-1} of any odd degree irreducible character of S_n has a unique irreducible 
constituent of odd degree.
This result was later generalized by Isaacs, Navarro Olsson and Tiep.
In this talk I will survey some recent developments on this topic.

At the beginning of the 20th century, Jacques Hadamard gave the definition of well-posed problems, with a view to classifying “correct” mathematical models of physical phenomena. Three criteria should be fulfilled: a solution exists, that solution is unique, and it should depend continuously on the parameters.

Subscribe to