16:00
Conservation of number, difference equations, and a technical problem in positive characteristic.
Abstract
The number of solutions of a given algebro-geometric configuration, when it is finite, does not change upon a small perturbation of the parameters; this persists
even upon specializations that change the topology. The precise formulation of this principle of Poncelet and Schubert required, i.a., the notions of algebraically closed fields, flatness, completenesss, multiplicity. I will explain a model-theoretic version, presented in quite different terms. It applies notably to difference equations involving the Galois-Frobenius automorphism xp, uniformly in a prime p. In fixed positive characteristic, interesting technical problems arise that I will discuss if time permits.
Water Wave Absorption
Abstract
We are all familiar with the need for continuum mechanics-based models in physical applications. In this case, we are interested in large-scale water-wave problems, such as coastal flows and dam breaks.
When modelling these problems, we inevitably wish to solve them on a finite domain, and require boundary conditions to do so. Ideally, we would recreate the semi-infinite nature of a coastline by allowing any generated waves to flow out of the domain, as opposed to them reflecting off the far-field boundary and disrupting the remainder of our simulation. However, applying an appropriate boundary condition is not as straightforward as we might think.
In this talk, we aim to evaluate alternatives to so-called 'active boundary condition' absorption. We will derive a toy model of a shallow-water wavetank, and consider the implementation and efficacy of two 'passive' absorption techniques.
The effects of structural perturbations on the dynamics of networks
Abstract
We study how the synchronizability of a diffusive network increases (or decreases) when we add some links in its underlying graph. This is of interest in the context of power grids where people want to prevent from having blackouts, or for neural networks where synchronization is responsible of many diseases such as Parkinson. Based on spectral properties for Laplacian matrices, we show some classification results obtained (with Tiago Pereira and Philipp Pade) with respect to the effects of these links.
How long does it take to get there?
Abstract
There are a huge number of nonlinear partial differential equations that do not have analytic solutions. Often one can find similarity solutions, which reduce the number of independent variables, but still leads, generally, to a nonlinear equation. This can, only sometimes, be solved analytically. But always the solution is independent of the initial conditions. What role do they play? It is generally stated that the similarity solution agrees with the (not determined) exact solution when (for some variable say t) obeys t >> t_1. But what is t_1? How does it depend on the initial conditions? How large must t be for the similarity solution to be within 15, 10, 5, 1, 0.1, ….. percent of the real solution? And how does this depend on the parameters and initial conditions of the problem? I will explain how two such typical, but somewhat different, fundamental problems can be solved, both analytically and numerically, and compare some of the results with small scale laboratory experiments, performed during the talk. It will be suggested that many members of the audience could take away the ideas and apply them in their own special areas.
We are delighted to announce that Rama Cont has been appointed to the Professorship of Mathematical Finance in the Mathematical Institute here in Oxford. Currently Professor of Mathematics and Chair in Mathematical Finance at Imperial College London, Rama Cont held teaching and research positions at Ecole Polytechnique (France), Columbia University (New York) and Université Pierre & Marie Curie (Paris VI).
RAAGs and Stable Commutator Length
Abstract
Stable commutator length (scl) is a well established invariant of group elements g (write scl(g)) and has both geometric and algebraic meaning.
It is a phenomenon that many classes of non-positively curved groups have a gap in stable commutator length: For every non-trivial element g, scl(g) > C for some C>0. Such gaps may be found in hyperbolic groups, Baumslag-solitair groups, free products, Mapping class groups, etc.
However, the exact size of this gap usually unknown, which is due to a lack of a good source of “quasimorphisms”.
In this talk I will construct a new source of quasimorphisms which yield optimal gaps and show that for Right-Angled Artin Groups and their subgroups the gap of stable commutator length is exactly 1/2. I will also show this gap for certain amalgamated free products.
Knowledge Under Siege: The Future of Expertise In The Information Age
Abstract
Today, everyone knows everything: with only a quick trip through WebMD or Wikipedia, average citizens believe themselves to be on an equal intellectual footing with doctors and diplomats. All voices, even the most ridiculous, demand to be taken with equal seriousness, and any claim to the contrary is dismissed as undemocratic elitism. Tom Nichols argues that in this climate, democratic institutions themselves are in danger of falling either to populism or to technocracy- or in the worst case, a combination of both.
Tom Nichols is Professor of National Security Affairs at the US Naval War College, an adjunct professor at the Harvard Extension School, and a former aide in the U.S. Senate. His latest book is The Death of Expertise: The Campaign Against Established Knowledge and Why it Matters. This lecture is based on that book.
All welcome. No need to book.
Oxford Mathematician Ali El Kaafarani explains how mathematics is tackling the issue of post-quantum digital security.
"Quantum computers are on their way to us, not from a galaxy far far away; they are literally right across the road from us in the Physics Department of Oxford University.