Oxford Mathematicians Andy Allan and Sam Cohen talk about their recent work on estimating with uncertainty.
15:45
The Euler characteristic of Out(F_n) and renormalized topological field theory
Abstract
I will report on recent joint work with Karen Vogtmann on the Euler characteristic of $Out(F_n)$ and the moduli space of graphs. A similar study has been performed in the seminal 1986 work of Harer and Zagier on the Euler characteristic of the mapping class group and the moduli space of curves. I will review a topological field theory proof, due to Kontsevich, of Harer and Zagier´s result and illustrate how an analogous `renormalized` topological field theory argument can be applied to $Out(F_n)$.
15:45
Towards Higher Morse-Cerf Theory: Classifying Constructible Bundles on R^n
Abstract
We present a programme towards a combinatorial language for higher (stratified) Morse-Cerf theory. Our starting point will be the interpretation of a Morse function as a constructible bundle (of manifolds) over R^1. Generalising this, we describe a surprising combinatorial classification of constructible bundles on flag foliated R^n (the latter structure of a "flag foliation” is needed for us to capture the notions of "singularities of higher Morse-Cerf functions" independently of differentiable structure). We remark that flag foliations can also be seen to provide a notion of directed topology and in this sense higher Morse-Cerf singularities are closely related to coherences in higher category theory. The main result we will present is the algorithmic decidability of existence of mutual refinements of constructible bundles. Using this result, we discuss how "combinatorial stratified higher Morse-Cerf theory" opens up novel paths to the computational treatment of interesting questions in manifold topology.
15:45
Lower bounds on the tunnel number of composite spatial theta graphs
Abstract
The tunnel number of a graph embedded in a 3-dimensional manifold is the fewest number of arcs needed so that the union of the graph with the arcs has handlebody exterior. The behavior of tunnel number with respect to connected sum of knots can vary dramatically, depending on the knots involved. However, a classical theorem of Scharlemann and Schultens says that the tunnel number of a composite knot is at least the number of factors. For theta graphs, trivalent vertex sum is the operation which most closely resembles the connected sum of knots. The analogous theorem of Scharlemann and Schultens no longer holds, however. I will provide a sharp lower bound for the tunnel number of composite theta graphs, using recent work on a new knot invariant which is additive under connected sum and trivalent vertex sum. This is joint work with Maggy Tomova.
Analysis of systems with small cross-diffusion
Abstract
I will present recent results concerning a class of nonlinear parabolic systems of partial differential equations with small cross-diffusion (see doi.org/10.1051/m2an/2018036 and arXiv:1906.08060). Such systems can be interpreted as a perturbation of a linear problem and they have been proposed to describe the dynamics of a variety of large systems of interacting particles. I will discuss well-posedness, regularity, stability and convergence to the stationary state for (strong) solutions in an appropriate Banach space. I will also present some applications and refinements of the above-mentioned results for specific models.
14:15
Deformation of a Howe duality
Abstract
In this talk, I will report about a joint work with D. Ciubotaru, in which we investigate the Dunkl version of the classical Howe-duality (O(k),spo(2|2)). Similar Fischer-type decompositions were studied before in the works of Ben-Said, Brackx, De Bie, De Schepper, Eelbode, Orsted, Soucek and Somberg for other Howe-dual pairs. Our work builds on the notion of a Dirac operator for Drinfeld algebras introduced by Ciubotaru, which was inspired by the analogous theory for Lie algebras, as well as the work of Cheng and Wang on classical Howe dualities.
14:15
Heisenberg groups and graded Lie algebras
Abstract
I will talk about a way of building graded Lie algebras from certain Heisenberg groups. The input for this construction arises naturally when studying families of algebraic curves, and we'll look at some examples in which Lie theory interacts with number theory in an illuminating way.
Ito-Wentzell-Lions formula for measure dependent random fields under full and conditional measure flows
Abstract
We present several Itô-Wentzell formulae on Wiener spaces for real-valued functionals random field of Itô type depending on measures. We distinguish the full- and marginal-measure flow cases. Derivatives with respect to the measure components are understood in the sense of Lions.
This talk is based on joint work with V. Platonov (U. of Edinburgh), see https://arxiv.org/abs/1910.01892.
Low-dimensional quantum Yang-Mills measures
Abstract
Yang-Mills theory plays an important role in the Standard Model and is behind many mathematical developments in geometric analysis. In this talk, I will present several recent results on the problem of constructing quantum Yang-Mills measures in 2 and 3 dimensions. I will particularly speak about a representation of the 2D measure as a random distributional connection and as the invariant measure of a Markov process arising from stochastic quantisation. I will also discuss the relationship with previous constructions of Driver, Sengupta, and Lévy based on random holonomies, and the difficulties in passing from 2 to 3 dimensions. Partly based on joint work with Ajay Chandra, Martin Hairer, and Hao Shen.
Asset Prices in Segmented and Integrated Markets
Abstract
This paper evaluates the effect of market integration on prices and welfare, in a model where two Lucas trees grow in separate regions with similar investors. We find equilibrium asset price dynamics and welfare both in segmentation, when each region holds its own asset and consumes its dividend, and in integration, when both regions trade both assets and consume both dividends. Integration always increases welfare. Asset prices may increase or decrease, depending on the time of integration, but decrease on average. Correlation in assets' returns is zero or negative before integration, but significantly positive afterwards, explaining some effects commonly associated with financialization.