Linear orders in NIP theories
Abstract
A longstanding open question asks whether every unstable NIP theory interprets an infinite linear order. I will present a construction that almost provides a positive answer. I will also discuss some conjectural applications to the classification of omega-categorical NIP structure, generalizing what is known for omega-stable, and classification of models mimicking the superstable case.
Isotrivial Mordell-Lang and finite automata
Abstract
About fifteen years ago, Thomas Scanlon and I gave a description of sets that arise as the intersection of a subvariety with a finitely generated subgroup inside a semiabelian variety over a finite field. Inspired by later work of Derksen on the positive characteristic Skolem-Mahler-Lech theorem, which turns out to be a special case, Jason Bell and I have recently recast those results in terms of finite automata. I will report on this work, as well as on the work-in-progress it has engendered, also with Bell, on an effective version of the isotrivial Mordell-Lang theorem.
Counting lattice points and O-minimal structures
Abstract
Let L be a lattice in R^n and let Z in R^(m+n) a parameterized family of subsets Z_T of R^n. Starting from an old result of Davenport and using O-minimal structures, together with Martin Widmer, we proved for fairly general families Z an estimate for the number of points of L in Z_T, which is essentially best possible.
After introducing the problem and stating the result, we will present applications to counting algebraic integers of bounded height and to Manin’s Conjecture.
Pattern formations by large interaction forces in a nonlinear elliptic system
Abstract
For a nonlinear elliptic system coming from a nonlinear Schroedinger system, the interaction between components is represented by a symmetric matrix. The construction of possibly lower energy nontrivial solutions and the complete description of dependence of the solutions on the matrix are quite challenging tasks. Especially, we are interested in the case that intra-species interaction forces are fixed and inter-species forces are very large, that is, the diagonal part of the symmetric matric is fixed and the non-diagonal entries are very large. In this case, depending on the network between components by repulsive or attractive forces, several different types of patterns may appear. I would like to explain our recent studies on the problem with three components and touch a possible exploration on the general n-components problem.
Oxford Mathematician Sir John Ball FRS has been awarded the King Faisal Prize for Science. Launched by the King Faisal Foundation (KFF) and granted for the first time in 1979, the King Faisal Prize recognises the outstanding works of individuals and institutions in five major categories: Service to Islam, Islamic Studies, Arabic Language and Literature, Medicine, and Science.
Characterizing participation in online discussion platforms
Abstract
Online discussions are the essence of many social platforms on the Internet. Discussion platforms are receiving increasing interest because of their potential to become deliberative spaces. Although previous studies have proposed approaches to measure online deliberation using the complexity of discussion networks as a proxy, little research has focused on how these networks are affected by changes of platform features.
In this talk, we will focus on how interfaces might influence the network structures of discussions using techniques like interrupted time series analysis and regression discontinuity design. Futhermore, we will review and extend state-of-the-art generative models of discussion threads to explain better the structure and growth of online discussions.
Uniformity of integral points and moduli spaces of stable pairs
Abstract
Starting from the seminal paper of Caporaso-Harris-Mazur, it has been proved that if Lang's Conjecture holds in arbitrary dimension, then it implies a uniform bound for the number of rational points in a curve of general type and analogue results in higher dimensions. In joint work with Kenny Ascher we prove analogue statements for integral points (or more specifically stably-integral points) on curves of log general type and we extend these to higher dimensions. The techniques rely on very recent developments in the theory of moduli spaces for stable pairs, a higher dimensional analogue of pointed stable curves.
If time permits we will discuss how very interesting problems arise in dimension 2 that are related to the geometry of the log-cotangent bundle.
On the motive of the stack of vector bundles on a curve
Abstract
Following Grothendieck's vision that many cohomological invariants of of an algebraic variety should be captured by a common motive, Voevodsky introduced a triangulated category of mixed motives which partially realises this idea. After describing this category, I will explain how to define the motive of certain algebraic stacks in this context. I will then report on joint work in progress with Victoria Hoskins, in which we study the motive of the moduli stack of vector bundles on a smooth projective curve and show that this motive can be described in terms of the motive of this curve and its symmetric powers.