Thu, 16 Nov 2017

16:00 - 17:30
L4

Optimal control of point processes with a Backward Stochastic Differential Equations approach

Fulvia Confortola
(Politecnico di Milano)
Abstract

We formulate and solve a class of Backward Stochastic Differential Equations (BSDEs) driven by the compensated random measure associated to a given marked point process on a general state space. We present basic well-posedness results in L 2 and in L 1 . We show that in the setting of point processes it is possible to solve the equation recursively, by replacing the BSDE by an ordinary differential equation in between jumps. Finally we address applications to optimal control of marked point processes, where the solution of a suitable BSDE allows to identify the value function and the optimal control. The talk is based on joint works with Marco Fuhrman and Jean Jacod. 

Thu, 09 Nov 2017

16:00 - 17:30
L4

Convergence of utility indifference prices to the superreplication price in a multiple-priors framework Joint work with Romain Blanchard

Laurence Carassus
(De Vinci Pôle Universitaire and Université de Reims)
Abstract

This paper formulates an utility indifference pricing model for investors trading in a discrete time financial market under non-dominated model uncertainty.
The investors preferences are described by strictly increasing concave random functions defined on the positive axis. We prove that under suitable
conditions the multiple-priors utility indifference prices of a contingent claim converge to its multiple-priors superreplication price. We also
revisit the notion of certainty equivalent for random utility functions and establish its relation with the absolute risk aversion.

Thu, 02 Nov 2017

16:00 - 17:30
L4

Optimal stopping and stochastic control with nonlinear expectations and applications to nonlinear pricing in complete and incomplete markets

Roxana Dumitrescu
(Kings College London)
Abstract


 In the first part of the talk, we present some recent and new developments in the theory of control and optimal stopping with nonlinear expectations. We first introduce an optimal stopping game with nonlinear expectations (Generalized Dynkin Game) in a non-Markovian framework and study its links with nonlinear doubly reflected BSDEs. We then present some new results (which are part of an ongoing work) on mixed stochastic stochastic control/optimal stopping problems (as well as stochastic control/optimal stopping game problems) in a non-Markovian framework and their relation with constrained reflected BSDEs with lower obstacle (resp. upper obstacle). These results are obtained using some technical tools of stochastic analysis. In the second part of the talk, we discuss applications to the $\cal{E}^g$ pricing of American options and Game options in complete and incomplete markets (based on joint works with M.C.Quenez and Agnès Sulem).
 

Thu, 19 Oct 2017

16:00 - 17:30
L4

Bounds for VIX Futures Given S&P 500 Smiles

Julien Guyon
(Bloomberg New York)
Abstract

We derive sharp bounds for the prices of VIX futures using the full information of S&P 500 smiles. To that end, we formulate the model-free sub/superreplication of the VIX by trading in the S&P 500 and its vanilla options as well as the forward-starting log-contracts. A dual problem of minimizing/maximizing certain risk-neutral expectations is introduced and shown to yield the same value. The classical bounds for VIX futures given the smiles only use a calendar spread of log-contracts on the S&P 500. We analyze for which smiles the classical bounds are sharp and how they can be improved when they are not. In particular, we introduce a tractable family of functionally generated portfolios which often improves the classical spread while still being tractable, more precisely, determined by a single concave/convex function on the line. Numerical experiments on market data and SABR smiles show that the classical lower bound can be improved dramatically, whereas the upper bound is often close to optimal.

Thu, 12 Oct 2017

16:00 - 17:30
L4

Closing The Loop of Optimal Trading: a Mean Field Game of Controls

Charles-Albert Lehalle
(CFM (France))
Abstract

This talk explains how to formulate the now classical problem of optimal liquidation (or optimal trading) inside a Mean Field Game (MFG). This is a noticeable change since usually mathematical frameworks focus on one large trader in front of a " background noise " (or " mean field "). In standard frameworks, the interactions between the large trader and the price are a temporary and a permanent market impact terms, the latter influencing the public price. Here the trader faces the uncertainty of fair price changes too but not only. He has to deal with price changes generated by other similar market participants, impacting the prices permanently too, and acting strategically. Our MFG formulation of this problem belongs to the class of " extended MFG ", we hence provide generic results to address these " MFG of controls ", before solving the one generated by the cost function of optimal trading. We provide a closed form formula of its solution, and address the case of " heterogenous preferences " (when each participant has a different risk aversion). Last but not least we give conditions under which participants do not need to instantaneously know the state of the whole system, but can " learn " it day after day, observing others' behaviors.

Thu, 13 Jul 2017
13:30
C1

The universal triangle-free graph has finite big Ramsey degrees

Natasha Dobrinen
(Denver)
Abstract

A main part of the proof uses forcing to establish a Ramsey theorem on a new type of tree, though the result holds in ZFC.  The space of such trees almost forms a topological Ramsey space.

Wed, 07 Feb 2018

17:00 - 18:00
L1

Michael Bonsall - Scaling the Maths of Life

Michael Bonsall
(University of Oxford)
Abstract

In this talk Michael Bonsall will explore how we can use mathematics to link between scales of organisation in biology. He will delve in to developmental biology, ecology and neurosciences, all illustrated and explored with real life examples, simple games and, of course, some neat maths.

Michael Bonsall is Professor of Mathematical Biology in Oxford.

7 February 2018, 5pm-6pm, Mathematical Institute, Oxford

Please email @email to register or watch online: https://livestream.com/oxuni/bonsall

Thu, 17 May 2018

17:00 - 18:00
L1

Michael Atiyah - Numbers are Serious but they are also Fun

Michael Atiyah
(University of Edinburgh)
Abstract

Archimedes, who famously jumped out of his bath shouting "Eureka", also invented $\pi$. 

Euler invented $e$ and had fun with his formula $e^{2\pi i} = 1$

The world is full of important numbers waiting to be invented. Why not have a go ?

Michael Atiyah is one of the world's foremost mathematicians and a pivotal figure in twentieth and twenty-first century mathematics. His lecture will be followed by an interview with Sir John Ball, Sedleian Professor of Natural Philosophy here in Oxford where Michael will talk about his lecture, his work and his life as a mathematician.

Please email @email to register.

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Subscribe to