Mon, 12 Nov 2018
15:45
L6

Geodesic Currents and Counting Curves

Viveka Erlandsson
(Bristol University)
Abstract

Two curves in a closed hyperbolic surface of genus g are of the same type if they differ by a mapping class. Mirzakhani studied the number of curves of given type and of hyperbolic length bounded by L, showing that as L grows, it is asymptotic to a constant times L^{6g-6}. In this talk I will discuss a generalization of this result, allowing for other notions of length. For example, the same asymptotics hold if we put any (singular) Riemannian metric on the surface. The main ingredient in this generalization is to study measures on the space of geodesic currents.

Mon, 08 Oct 2018
15:45
L6

The loop space homology of a small category

Robert Oliver
(University Paris 13)
Abstract


In an article published in 2009, Dave Benson described, for a finite group $G$, the mod $p$ homology of the space $\Omega(BG^\wedge_p)$ --- the loop space of the $p$-completion of $BG$ --- in purely algebraic terms. In joint work with Carles Broto and Ran Levi, we have tried to better understand Benson's result by generalizing it. We showed that when $\mathcal{C}$ is a small category, $|\mathcal{C}|$ is its geometric realization, $R$ is a commutative ring, and $|\mathcal{C}|^+_R$ is a plus construction of $|\mathcal{C}|$ with respect to homology with coefficients in $R$, then $H_*(\Omega(|\mathcal{C}|^+_R);R)$ is the homology any chain complex of projective $R\mathcal{C}$-modules that satisfies certain conditions. Benson's theorem is then the special case where $\mathcal{C}$ is the category associated to a finite group $G$ and $R=F_p$, so that $p$-completion is a special case of the plus construction.
 

Tue, 20 Nov 2018
14:30
L6

On the rational Turán exponents conjecture

Dongyeap Kang
(KAIST)
Abstract

The extremal number ${\rm ex}(n,F)$ of a graph $F$ is the maximum number of edges in an $n$-vertex graph not containing $F$ as a subgraph. A real number $r \in [0,2]$ is realisable if there exists a graph $F$ with ${\rm ex}(n , F) = \Theta(n^r)$. Several decades ago, Erdős and Simonovits conjectured that every rational number in $[1,2]$ is realisable. Despite decades of effort, the only known realisable numbers are $0,1, \frac{7}{5}, 2$, and the numbers of the form $1+\frac{1}{m}$, $2-\frac{1}{m}$, $2-\frac{2}{m}$ for integers $m \geq 1$. In particular, it is not even known whether the set of all realisable numbers contains a single limit point other than two numbers $1$ and $2$.

We discuss some progress on the conjecture of Erdős and Simonovits. First, we show that $2 - \frac{a}{b}$ is realisable for any integers $a,b \geq 1$ with $b>a$ and $b \equiv \pm 1 ~({\rm mod}\:a)$. This includes all previously known ones, and gives infinitely many limit points $2-\frac{1}{m}$ in the set of all realisable numbers as a consequence. Secondly, we propose a conjecture on subdivisions of bipartite graphs. Apart from being interesting on its own, we show that, somewhat surprisingly, this subdivision conjecture in fact implies that every rational number between 1 and 2 is realisable.

This is joint work with Jaehoon Kim and Hong Liu.

Oxford Mathematician Kristian Kiradjiev has won the Graham Hoare Prize (awarded by the Institute of Mathematics and its Applications) for his article "Connecting the Dots with Pick's Theorem". The Graham Hoare Prize is awarded annually to Early Career Mathematicians for a brilliant Mathematics Today article. Kristian also won the award in 2017. Here he talks about his work.

Tue, 13 Nov 2018

15:45 - 16:45
L4

On Cayley and Langlands type correspondences for Higgs bundles

Laura Schaposnik
(UIC)
Abstract

The Hitchin fibration is a natural tool through which one can understand the moduli space of Higgs bundles and its interesting subspaces (branes). After reviewing the type of questions and methods considered in the area, we shall dedicate this talk to the study of certain branes which lie completely inside the singular fibres of the Hitchin fibrations. Through Cayley and Langlands type correspondences, we shall provide a geometric description of these objects, and consider the implications of our methods in the context of representation theory, Langlands duality, and within a more generic study of symmetries on moduli spaces.

Thu, 25 Oct 2018

12:00 - 13:00
L4

Well-posedness of three-dimensional isentropic compressible Navier-Stokes equations with degenerate viscosities and far field vacuum

Shengguo Zhu
(University of Oxford)
Abstract

We will talk about the Cauchy problem of the three-dimensional isentropic compressible Navier-Stokes equations. When viscosity coefficients are given as a constant multiple of density's power, based on some analysis  of  the nonlinear structure of this system, by introducing some new variables and the initial layer compatibility conditions, we identify the class of initial data admitting a local regular solution with far field vacuum and  finite energy  in some inhomogeneous Sobolev spaces, which solves an open problem of degenerate viscous flow partially mentioned by Bresh-Desjardins-Metivier (2006, Anal. Simi. Fluid Dynam.),  Jiu-Wang-Xin (2014, JMFM) and so on. Moreover, in contrast to the classical well-posedness theory in the case of  the constant viscosity,   we show   that one can not obtain any global classical solution whose $L^\infty$  norm of $u$ decays to zero as time $t$ goes to infinity under the assumptions on the conservation laws of total mass and momentum.

Thu, 29 Nov 2018

12:00 - 13:00
L4

Conformal compactification and asymptotic behaviour

Jean-Philippe Nicolas
(University of Brest)
Abstract

This talk will be an introduction to the use of conformal methods in asymptotic analysis in general relativity. We shall consider the explicit example of flat spacetime (Minkowski spacetime). The full conformal compactification will be constructed. For a simple example of a conformally invariant equation (we'll take the wave equation), we shall see how the compactification allows to infer precise informations on the asymptotic behaviour of the solution in all directions, for a certain class of data at any rate. Then, depending on time and questions, I will either describe how a scattering theory can be constructed using the same method or, explain how conformal methods can be used on other asymptotically flat geometries.

Thu, 15 Nov 2018

12:00 - 13:00
L4

Biot-Savart law for irregular vorticity measures and Kaden's approximations

Tomasz Cieslak
(Institute of Mathematics - Polish Academy of Sciences)
Abstract

I will prove the 2d Biot-Savart law for the vorticity being an unbounded measure $\mu$, i.e. such that $\mu(\mathbb{R}^2)=\infty$, and show how can one infer some useful information concerning Kaden's spirals using it. Vorticities being unbounded measures appear naturally in the engineering literature as self-similar approximations of 2d Euler flows, see for instance Kaden's or Prandtl's spirals. Mathematicians are interested in such objects since they seem to be related to the questions of well-posedness of Delort's solutions of the 2d vortex sheet problem for the Euler equation. My talk is based on a common paper with K.Oleszkiewicz, M. Preisner and M. Szumanska.

Thu, 08 Nov 2018

12:00 - 13:00
L4

Regularity vs Singularities for immiscible incompressible Navier-Stokes fluids

Francisco Gancedo
(University of Seville)
Abstract

In this talk we consider several scenarios involving the interaction among incompressible fluids of different nature. The main concern is the dynamics of the free boundary separating the fluids, which evolves with the velocity flow. The important question to address is whether the regularity is preserved in time or, on the other hand, the system develops singularities. We focus on Navier-Stokes models, where the viscosity of the fluids play a crucial role. At first showing results of finite time blow-up for the case of vacuum-fluid interaction. Later discussing new recent results on global existence for 1996 P.L. Lions' conjecture for density patches evolving by inhomogeneous Navier-Stokes equations.

Subscribe to