Bogomolov type inequality for Fano varieties with Picard number 1
Abstract
I will talk about some basic facts about slope stable sheaves and the Bogomolov inequality. New techniques from stability conditions will imply new stronger bounds on Chern characters of stable sheaves on some special varieties, including Fano varieties, quintic threefolds and etc. I will discuss the progress in this direction and some related open problems.
Binary Matrix Completion for Bioactivity Prediction
Abstract
Matrix completion is an area of great mathematical interest and has numerous applications, including recommender systems for e-commerce. The recommender problem can be viewed as follows: given a database where rows are users and and columns are products, with entries indicating user preferences, fill in the entries so as to be able to recommend new products based on the preferences of other users. Viewing the interactions between user and product as links in a bipartite graph, the problem is equivalent to approximating a partially observed graph using clusters. We propose a divide and conquer algorithm inspired by the work of [1], who use recursive rank-1 approximation. We make the case for using an LP rank-1 approximation, similar to that of [2] by a showing that it guarantees a 2-approximation to the optimal, even in the case of missing data. We explore our algorithm's performance for different test cases.
[1] Shen, B.H., Ji, S. and Ye, J., 2009, June. Mining discrete patterns via binary matrix factorization. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 757-766). ACM.
[2] Koyutürk, M. and Grama, A., 2003, August. PROXIMUS: a framework for analyzing very high dimensional discrete-attributed datasets. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 147-156). ACM.
16:00
Parallels in universality between the universal algorithm and the universal finite set
Abstract
Abstract: The universal algorithm is a Turing machine program that can in principle enumerate any finite sequence of numbers, if run in the right model of PA, and furthermore, can always enumerate any desired extension of that sequence in a suitable end-extension of that model. The universal finite set is a set-theoretic analogue, a locally verifiable definition that can in principle define any finite set, in the right model of set theory, and can always define any desired finite extension of that set in a suitable top-extension of that model. Recent work has uncovered a $\Sigma_1$-definable version that works with respect to end-extensions. I shall give an account of all three results, which have a parallel form, and describe applications to the model theory of arithmetic and set theory. Post questions and commentary on my blog at http://jdh.hamkins.org/parallels-in-universality-oxford-math-logic-semi…;
14:00
A generalization of Steinberg theory and an exotic moment map
Abstract
For a reductive group $ G $, Steinberg established a map from the Weyl group to nilpotent $ G $-orbits using momentmaps on double flag varieties. In particular, in the case of the general linear group, he re-interpreted the Robinson-Schensted correspondence between the permutations and pairs of standard tableaux of the same shape in terms of product of complete flags.
We generalize his theory to the case of symmetric pairs $ (G, K) $, and obtained two different maps. In the case where $ (G, K) = (\GL_{2n}, \GL_n \times \GL_n) $, one of the maps is a generalized Steinberg map, which induces a generalization of the RS correspondence for degenerate permutations. The other is an exotic moment map, which maps degenerate permutations to signed Young diagrams, i.e., $ K $-orbits in the Cartan space $ (\lie{g}/\lie{k})^* $.
We explain geometric background of the theory and combinatorial procedures which produces the above mentioned maps.
This is an on-going joint work with Lucas Fresse.
Total positivity: a concept at the interface between algebra, analysis and combinatorics
Abstract
A matrix M of real numbers is called totally positive if every minor of M is nonnegative. This somewhat bizarre concept from linear algebra has surprising connections with analysis - notably polynomials and entire functions with real zeros, and the classical moment problem and continued fractions - as well as combinatorics. I will explain briefly some of these connections, and then introduce a generalization: a matrix M of polynomials (in some set of indeterminates) will be called coefficientwise totally positive if every minor of M is a polynomial with nonnegative coefficients. Also, a sequence (an)n≥0 of real numbers (or polynomials) will be called (coefficientwise) Hankel-totally positive if the Hankel matrix H = (ai+j)i,j ≥= 0 associated to (an) is (coefficientwise) totally positive. It turns out that many sequences of polynomials arising in enumerative combinatorics are (empirically) coefficientwise Hankel-totally positive; in some cases this can be proven using continued fractions, while in other cases it remains a conjecture.
Regularity theory for Maxwell's equations
Abstract
The focus of this talk is the regularity theory for time-harmonic Maxwell's equations with complex anisotropic parameters. By using the Helmholtz decomposition of the fields, we show how the problem can be completely reduced to a regularity question for elliptic equations, for which classical results may be applied. In particular, we prove the Hölder regularity of solutions under minimal assumptions on the coefficients.
The Interdistrict shipping problem
Abstract
At first glance the Interdistrict shipping problem resembles a transportation problem. N sources with M destinations with k Stock keeping units (SKU’s); however, we want to solve for the optimal shipping frequency between each node while determining the flow of each SKU across the network. As the replenishment quantity goes up, the shipping frequency goes down and the inventory holding cost goes up (AWI = Replenishment Qty/2 + SS). Safety stock also increases as frequency decreases. The relationship between replenishment quantity and shipping frequency is non-linear (frequency = annual demand/replenishment qty). The trucks which are used to transfer the product have finite capacity and the cost to drive the truck between 2 locations is constant regardless of how many containers are actually on the truck up to the max capacity. Each product can have a different footprint of truck capacity. Cross docking is allowed. (i.e. a truck may travel from Loc A to loc B carrying products X and Y. At loc B, the truck unloads product X, picks up product Z, and continues to location C. The key here is that product Y does not incur any handling costs at Loc B while products X and Z do.)
The objective function seeks to minimize the total costs ( distribution + handling + inventory holding costs) for all locations, for all SKU’s, while determining how much of each product should flow across each arc such that all demand is satisfied.