Fri, 28 Feb 2025

11:00 - 12:00
L4

Machine learning interatomic potentials to dynamics-preserving coarse-graining strategies

Dr Matthias Sachs
(Department of Mathematics University of Birmingham)
Abstract

Recent progress in the development of equivariant neural network architectures predominantly used for machine learning interatomic potentials (MLIPs) has opened new possibilities in the development of data-driven coarse-graining strategies. In this talk, I will first present our work on the development of learning potential energy surfaces and other physical quantities, namely the Hyperactive Learning framework[1], a Bayesian active learning strategy for automatic efficient assembly of training data in MLIP and ACEfriction [2], a framework for equivariant model construction based on the Atomic Cluster Expansion (ACE) for learning of configuration-dependent friction tensors in the dynamic equations of molecule surface interactions and Dissipative Particle Dynamics (DPD). In the second part of my talk, I will provide an overview of our work on the simulation and analysis of Generalized Langevin Equations [3,4] as obtained from systematic coarse-graining of Hamiltonian Systems via a Mori-Zwanzig projection and present an outlook on our ongoing work on developing data-driven approaches for the construction of dynamics-preserving coarse-grained representations.

References:

[1] van der Oord, C., Sachs, M., Kovács, D.P., Ortner, C. and Csányi, G., 2023. Hyperactive learning for data-driven interatomic potentials. npj Computational Materials

[2] Sachs, M., Stark, W.G., Maurer, R.J. and Ortner, C., 2024. Equivariant Representation of Configuration-Dependent Friction Tensors in Langevin Heatbaths. to appear in Machine Learning: Science & Technology

[3] Leimkuhler, B. and Sachs, M., 2022. Efficient numerical algorithms for the generalized Langevin equation. SIAM Journal on Scientific Computing

[4] Leimkuhler, B. and Sachs, M., 2019. Ergodic properties of quasi-Markovian generalized Langevin equations with configuration-dependent noise and non-conservative force. In Stochastic Dynamics Out of Equilibrium: Institut Henri Poincaré, 2017 

 

 

Fri, 21 Feb 2025

11:00 - 12:00
L4

Epithelial-mesenchymal plasticity at scale: AI-powered insights from single cells and spatial transcriptomics

Prof Maria Secrier
(Department of Genetics, Evolution and Environment University College London)
Abstract

The epithelial to mesenchymal transition (EMT) is a key cellular process underlying cancer progression, with multiple intermediate states whose molecular hallmarks remain poorly characterized. In this talk, I will describe AI-powered and ecology-inspired methods recently developed by us to provide a multi-scale view of the epithelial-mesenchymal plasticity in cancer from single cell and spatial transcriptomics data. First, we employed a large language model similar to the one underlying chatGPT but tailored for biological data (inspired by scBERT methodology), to predict individual stable states within the EMT continuum in single cell data and dissect the regulatory processes governing these states. Secondly, we leveraged spatial transcriptomics of breast cancer tissue to delineate the spatial relationships between cancer cells occupying distinct states within the EMT continuum and various hallmarks of the tumour microenvironment. We introduce a new tool, SpottedPy, that identifies tumour hotspots within spatial transcriptomics slides displaying enrichment in processes of interest, including EMT, and explores the distance between these hotspots and immune/stromal-rich regions within the broader environment at flexible scales. We use this method to delineate an immune evasive quasi-mesenchymal niche that could be targeted for therapeutic benefit. Our insights may inform strategies to counter immune evasion enabled by EMT and offer an expanded view of the coupling between EMT and microenvironmental plasticity in breast cancer.

Fri, 14 Feb 2025

11:00 - 12:00
L4

Computational investigation of single-scale and multi-scale heterogeneous immune responses during cancer evolution

Prof Raluca Eftimie
(Mathematics Laboratory Université de Franche-Comté, Besançon)
Abstract

Tumour microenvironment is characterised by heterogeneity at various scales: from various cell populations (immune cells, cancerous cells, ...) and various molecules that populate the microenvironment (cytokines, chemokines, extracellular vesicles, …); to phenotype heterogeneity inside the same cell population (e.g., immune cells with different phenotypes and different functions); as well as temporal heterogeneity in cells’ phenotypes (as cancer evolves through time) and spatial heterogeneity.
In this talk we overview some mathematical models and computational approaches developed to investigate different single-scale and multi-scale aspects related to heterogeneous immune responses during cancer evolution. Throughout the talk we emphasise the qualitative vs. quantitative results, and data availability across different scales

Fri, 07 Feb 2025

11:00 - 12:00
L4

Self-organized patterning in complex biological fluids

Dr Giulia Celora
(Mathematical Institute University of Oxford)
Abstract

Understanding how living systems dynamically self-organise across spatial and temporal scales is a fundamental problem in biology; from the study of embryo development to regulation of cellular physiology. In this talk, I will discuss how we can use mathematical modelling to uncover the role of microscale physical interactions in cellular self-organisation. I will illustrate this by presenting two seemingly unrelated problems: environmental-driven compartmentalisation of the intracellular space; and self-organisation during collective migration of multicellular communities. Our results reveal hidden connections between these two processes hinting at the general role that chemical regulation of physical interactions plays in controlling self-organisation across scales in living matter

Fri, 31 Jan 2025

11:00 - 12:00
L4

Adventures in Mathematical Biology

Dr Kit Yates
(Dept of Mathematical Sciences Bath University)
Abstract

In this talk I will give a number of short vignettes of work that has been undertaken in my group over the last 15 years. Mathematically, the theme that underlies our work is the importance of randomness to biological systems. I will explore a number of systems for which randomness plays a critical role. Models of these systems which ignore this important feature do a poor job of replicating the known biology, which in turn limits their predictive power. The underlying biological theme of the majority our work is development, but the tools and techniques we have built can be applied to multiple biological systems and indeed further afield. Topics will be drawn from, locust migration, zebrafish pigment pattern formation, mammalian cell migratory defects, appropriate cell cycle modelling and more. I won't delve to deeply into anyone area, but am happy to take question or to expand upon of the areas I touch on.

Fri, 24 Jan 2025

11:00 - 12:00
L4

Combining computational modelling, deep generative learning and imaging to infer new biology

Prof Simon Walker-Samuel
(Dept of Imaging, UCL)
Abstract

Deep learning algorithms provide unprecedented opportunities to characterise complex structure in large data, but typically in a manner that cannot easily be interpreted beyond the 'black box'. We are developing methods to leverage the benefits of deep generative learning and computational modelling (e.g. fluid dynamics, solid mechanics, biochemistry), particularly in conjunction with biomedical imaging, to enable new insights into disease to be made. In this talk, I will describe our applications in several areas, including modelling drug delivery in cancer and retinal blood vessel loss in diabetes, and how this is leading us into the development of personalised digital twins.

Fri, 17 Jan 2025

11:00 - 12:00
L3

Do individuals matter? - From psychology, via wound healing and calcium signalling to ecology

Dr Ivo Siekmann
(School of Computer Science and Mathematics, Liverpool University)
Abstract
Should models in mathematical biology be based on detailed representations of individuals - biomolecules, cells, individual members of a population or agents in a social system? Or, alternatively, should individuals be described as identical members of a population, neglecting inter-individual differences? I will explore this question using recent examples from my own research.
 
In the beginning of my presentation I will ask you how you are feeling. Evaluating your answers, I will show how differences in personality can be represented in a model based on differential equations. I will then present an individual-based cell migration model based on the Ornstein-Uhlenbeck process that can help to design textured surfaces that enhance wound healing. In ecosystems, organisms that make decisions based on studying their environment such as fish might interact with populations that are unable of complex behaviour such as plankton. I will explain how piecewise-deterministic Markov (PDMP) models can be used for representing some populations as individuals and others as populations. PDMPs can also be used for modelling how interacting calcium channels generate calcium signals in cells. Finally, I will present a reaction-diffusion model of the photosynthetic activity of phytoplankton that explains how oxygen minimum zones emerge in the ocean.
Wed, 12 Feb 2025
16:00
Lecture Room 4

Weak integrality of finitely presented groups

Hélène Esnault
(Freie Universität Berlin)
Abstract

This is  a notion we defined with Johan de Jong. If a finitely presented group  is the topological fundamental group of a smooth quasi-projective complex variety, then we prove that it is weakly integral. To this aim we use the Langlands program (both arithmetic to produce companions and geometric to use de Jong’s conjecture). On the other hand there are finitely presented groups which are not weakly integral (Breuillard). So this notion is an obstruction.
 

Wed, 05 Feb 2025
16:00
Lecture Room 4

Twisting Higgs modules and applications to the p-adic Simpson correspondence II

Ahmed Abbes
(IHES)
Abstract

[This is the second in a series of two talks; the first talk will be in the Algebra Seminar of Tuesday Feb 4th https://www.maths.ox.ac.uk/node/70022]

In 2005, Faltings initiated a p-adic analogue of the complex Simpson correspondence, a theory that has since been explored by various authors through different approaches. In this two-lecture series (part I in the Algebra Seminar and part II in the Arithmetic Geometry Seminar), I will present a joint work in progress with Michel Gros and Takeshi Tsuji, motivated by the goal of comparing the parallel approaches we have developed and establishing a robust framework to achieve broader functoriality results for the p-adic Simpson correspondence.

The approach I developed with M. Gros relies on the choice of a first-order deformation and involves a torsor of deformations along with its associated Higgs-Tate algebra, ultimately leading to Higgs bundles. In contrast, T. Tsuji's approach is intrinsic, relying on Higgs envelopes and producing Higgs crystals. The evaluations of a Higgs crystal on different deformations differ by a twist involving a line bundle on the spectral variety.  A similar and essentially equivalent twisting phenomenon occurs in the first approach when considering the functoriality of the p-adic Simpson correspondence by pullback by a morphism that may not lift to the chosen deformations.
We introduce a novel approach to twisting Higgs modules using Higgs-Tate algebras, similar to the first approach of the p-adic Simpson correspondence. In fact, the latter can itself be reformulated as a twist. Our theory provides new twisted higher direct images of Higgs modules, that we apply to study the functoriality of the p-adic Simpson correspondence by higher direct images with respect to a proper morphism that may not lift to the chosen deformations. Along the way, we clarify the relation between our twisting and another twisting construction using line bundles on the spectral variety that appeared recently in other works.

Photo of ocean
In a new study, Oxford Mathematician Coralia Cartis and Samar Khatiwala from Oxford's Department of Earth Sciences, together with colleagues and support from across the UK, Europe and the USA, have developed a novel approach to speed up the optimisation of ocean biogeochemical models - critical tools for predicting the impacts of climate change on marine ecosystems and the global carbon cycle.
Subscribe to