Oxford Mathematician Yuuji Tanaka describes his part in the advances in our understanding of gauge theory.
Lie brackets on the homology of moduli spaces, and wall-crossing formulae
Abstract
Let $\mathbb K$ be a field, and $\mathcal M$ be the “projective linear" moduli stack of objects in a suitable $\mathbb K$-linear abelian category $\mathcal A$ (such as the coherent sheaves coh($X$) on a smooth projective $\mathbb K$-scheme $X$) or triangulated category $\mathcal T$ (such as the derived category $D^b$coh($X$)). I will explain how to define a Lie bracket [ , ] on the homology $H_*({\mathcal M})$ (with a nonstandard grading), making $H_*({\mathcal M})$ into a graded Lie algebra. This is a new variation on the idea of Ringel-Hall algebra.
There is also a differential-geometric version of this: if $X$ is a compact manifold with a geometric structure giving instanton-type equations (e.g. oriented Riemannian 4-manifold, $G_2$-manifold, Spin(7)-manifold) then we can define Lie brackets both on the homology of the moduli spaces of all $U(n)$ or $SU(n)$ connections on $X$ for all $n$, and on the homology of the moduli spaces of instanton $U(n)$ or $SU(n)$ connections on $X$ for all $n$.
All this is (at least conjecturally) related to enumerative invariants, virtual cycles, and wall-crossing formulae under change of stability condition.
Several important classes of invariants in algebraic and differential geometry — (higher rank) Donaldson invariants of 4-manifolds (in particular with $b^2_+=1$), Mochizuki invariants counting semistable coherent sheaves on surfaces, Donaldson-Thomas type invariants for Fano 3-folds and CY 4-folds — are defined by forming virtual classes for moduli spaces of “semistable” objects, and integrating some cohomology classes over them. The virtual classes live in the homology of the “projective linear" moduli stack. Yuuji Tanaka and I are working on a way to define virtual classes counting strictly semistables, as well as just stables / stable pairs.
I conjecture that in all these theories, the virtual classes transform under change of stability condition by a universal wall-crossing formula (from my previous work on motivic invariants) in the Lie algebra $(H_*({\mathcal M}), [ , ])$.
16:00
Moments of cubic L-functions over function fields
Abstract
I will talk about some recent work with Chantal David and Matilde Lalin about the mean value of L-functions associated to cubic characters over F_q[t] when q=1 (mod 3). I will explain how to obtain an asymptotic formula with a (maybe a little surprising) main term, which relies on using results from the theory of metaplectic Eisenstein series about cancellation in averages of cubic Gauss sums over functions fields.
16:00
Recent progress on the theory of free boundary minimal hypersurfaces
Abstract
In a given ambient Riemannian manifold with boundary, geometric objects of particular interest are those properly embedded submanifolds that are critical points of the volume functional, when allowed variations are only those that preserve (but not necessarily fix) the ambient boundary. This variational condition translates into a quite nice geometric condition, namely, minimality and orthogonal intersection with the ambient boundary. Even when the ambient manifold is simply a ball in the Euclidean space, the theory of these objects is very rich and interesting. We would like to discuss several aspects of the theory, including our own contributions to the subject on topics such as: classification results, index estimates and compactness (joint works with different groups of collaborators - I. Nunes, A. Carlotto, B. Sharp, R. Buzano - will be appropriately mentioned).
Zero dimensional Donaldson-Thomas invariants of Calabi-Yau 4-folds
Abstract
We study Hilbert schemes of points on a smooth projective Calabi-Yau 4-fold X and define DT4 invariants by integrating the Euler class of a tautological vector bundle against the virtual class. We conjecture a formula for their generating series, which we prove in certain cases when L corresponds to a smooth divisor on X. A parallel equivariant conjecture for toric Calabi-Yau 4-folds is proposed. This conjecture is proved for smooth toric divisors and verified for more general toric divisors in many examples. Combining the equivariant conjecture with a vertex calculation, we find explicit positive rational weights, which can be assigned to solid partitions. The weighted generating function of solid partitions is given by exp(M(q) − 1), where M(q) denotes the MacMahon function. This is joint work with Martijn Kool.
12:45
Compact G2 manifolds and the Duality between M-Theory and Heterotic String Theory
Abstract
M-theory on K3 surfaces and Heterotic Strings on T^3 give rise to dual theories in 7 dimensions. Applying this duality fibre-wise is expected to connect G2 manifolds with Calabi-Yau threefolds (together with vector bundles). We make these ideas explicit for a class of G2 manifolds realized as twisted connected sums and prove the equivalence of the spectra of the dual theories. This naturally gives us examples of singular TCS G2 manifolds realizing non-abelian gauge theories with non-chiral matter.
The Abel Prize is the most prestigious prize in Mathematics. Each year, in anticipation of the prize announcement, an afternnon of lectues showcases previous winners and member of the Committee. This year the event will be held in Oxford on Monday 15th January. Andrew Wiles, John Rognes and Irene Fonseca will be the speakers. Full details below. Everyone welcome. No need to register.
Timetable: