Wed, 09 Nov 2016
11:30
N3.12

Hilbert's Third Problem

Alex Margolis
Abstract

Two polyhedra are said to be scissors congruent if they can be subdivided into the same finite number of polyhedra such that each piece in the first polyhedron is congruent to one in the second. In 1900, Hilbert asked if there exist tetrahedra of the same volume which are not scissors congruent. I will give a history of this problem and its proofs, including an incorrect 'proof' by Bricard from 1896 which was only rectified in 2007.

Wed, 02 Nov 2016
11:30
N3.12

Methods of Galois group computation

Adam Jones
Abstract

The problem of computing the Galois group of an irreducible, rational polynomial has been studied for many years. I will discuss the methods developed over the years to approach this problem, and give some examples of them in practice. These methods mainly involve constructing and factorising resolvent polynomials, and thereby determining better upper bounds for the conjugacy class of the Galois group within the symmetric group, i.e. describe its action on the roots of the polynomial explicitly. I will describe how using approximations to the zeros of the polynomial allows us to construct resolvents, and in particular, how using p-adic approximations can be advantageous over numerical approximations, and how this can yield a direct and systematic method of determining the Galois group.

Mathematics can look like a foreign language to those who have not studied it in depth. Even for mathematicians, it can be difficult to understand the work of colleagues in other branches of mathematics, or indeed to know what questions they are seeking to answer in their research, because the vocabularies are so specialised and technical.

Marginal evidence for cosmic acceleration from Type Ia supernovae
Nielsen, J Guffanti, A Sarkar, S Scientific Reports volume 6 issue 1 (21 Oct 2016)
Mon, 28 Nov 2016
14:15
L3

Asymptotic behaviour for equidispersive solutions of the Boltzmann equation

Alessia Nota
(Bonn)
Abstract

In this talk we consider particular solutions of the Boltzmann equation which have the form $f (x,v,t) = g (v − M (t)x,t)$ where $M (t) = A(I + tA)^{−1}$ with the matrix $A$ describing a shear flow or a dilatation or a combination of both. These solutions are known as equidispersive solutions. We will show that, for different choices for the matrix A and for different homogeneities of the collision kernel, we obtain different long time asymptotics for the corresponding equidispersive solutions. In particular we will focus on the case of simple shear flow and prove rigorously the existence of self-similar solutions with exponentially increasing internal energy.

Wed, 02 Nov 2016

16:00 - 17:00

Quasi-isometry Invariance of Group Splittings over Coarse Poincaré Duality Groups

Alex Margolis
(Oxford University)
Abstract

Stallings' theorem states that a finitely generated group splits over a finite subgroup if and only if it has more than one end. As a consequence of this, group splittings over finite subgroups are invariant under quasi-isometry. I will discuss a generalisation of Stallings' theorem which shows that under suitable hypotheses, group splittings over classes of infinite groups, namely coarse $PD_n$ groups, are also invariant under quasi-isometry.

What is it like to do mathematical research? Many undergraduates wonder this, as they consider whether they would like to pursue graduate studies. There is no better way for the department to answer the question than to give undergraduates the opportunity to work on their own mathematical research projects. This summer the Oxford Mathematics enabled around 50 students to carry out such projects, working with faculty and postdocs in the department.

Wed, 30 Nov 2016

16:00 - 17:00
C1

Geometric Invariant Theory and its Variation

Joshua Jackson
((Oxford University))
Abstract

A central tool in the construction of moduli spaces throughout algebraic geometry and beyond, geometric invariant theory (GIT) aims to sensibly answer the question, "How can we quotient an algebraic variety by a group action?" In this talk I will explain some basics of GIT and indicate how it can be used to build moduli spaces, before exploring one of its salient features: the non-canonicity of the quotient. I will show how the dependence on an additional parameter, a choice of so-called 'linearisation', leads to a rich 'wall crossing' picture, giving different interrelated models of the quotient. Time permitting, I will also speak about recent developments in non-reductive GIT, and joint work extending this dependence to the non-reductive setting.

Subscribe to