A space of phylogenetic networks
Abstract
This will be a discussion of the paper https://arxiv.org/abs/1607.06978.
11:00
The mystical field with one element
Abstract
The “field with one element” is an interesting algebraic object that in some sense relates linear algebra with set theory. In a much deeper vein it is also expected to have a role in algebraic geometry that could potentially “lift" Deligne’s proof of the final Weil Conjecture for varieties over finite fields to a proof of the Riemann hypothesis for the Riemann zeta function. The only problem is that it doesn’t exist. In this highly speculative talk I will discuss some of these concepts, and focus mainly on zeta functions of algebraic varieties over finite fields. I will give a (very) brief sketch of how to interpret various zeta functions in a geometric context, and try to explain what goes wrong for the Riemann zeta function that makes this a difficult problem.
Flagellar motility and metaboly in Euglena gracilis: lessons on locomotion and shape control from a unicellular protist
Abstract
Locomotion strategies employed by unicellular organism are a rich source of inspiration for studying mechanisms for shape control. They are particularly interesting because they are invisible to the naked eye, and offer surprising new solutions to the question of how shape can be controlled.
In recent years, we have studied locomotion and shape control in Euglena gracilis. This unicellular protist is particularly intriguing because it can adopt different motility strategies: swimming by flagellar propulsion, or crawling thanks to large amplitude shape changes of the whole body (a behavior known as metaboly). We will survey our most recent findings within this stream of research.
Flows about superhydrophobic surfaces
Abstract
Superhydrophobic surfaces, formed by air entrapment within the cavities of a hydrophobic solid substrate, offer a promising potential for drag reduction in small-scale flows. It turns out that low-drag configurations are associated with singular limits, which to date have typically been addressed using numerical schemes. I will discuss the application of singular perturbations to several of the canonical problems in the field.
Tomosynthesis with nonlinear compressed sensing
Abstract
A new generation of low cost 3D tomography systems is based on multiple emitters and sensors that partially convolve measurements. A successful approach to deconvolve the measurements is to use nonlinear compressed sensing models. We discuss such models, as well as algorithms for their solution.
Passive control of viscous flow via elastic snap-through
Abstract
Snap-through buckling is a type of instability in which an elastic object rapidly jumps from one state to another, just as an umbrella flips upwards in a gust of wind. While snap-through under dry, mechanical loads has already been harnessed in engineering to generate fast motions between two states, the mechanisms underlying snapping in bulk fluid flows remain relatively unexplored. In this talk we demonstrate how elastic snap-through may be used to passively control fluid flows at low Reynolds number, in contrast to some pre-existing valves that rely on active control. We study viscous flow through a channel in which one of the bounding walls is an elastic arch. By performing experiments at the macroscopic scale, we show that snap-through of the arch rapidly changes the channel from a constricted to an unconstricted state, increasing the hydraulic conductivity by up to an order of magnitude. We also observe nonlinear pressure-flux characteristics away from snapping due to the coupling between the driving flow and elasticity. This behaviour is confirmed by a mathematical model that also shows the device may readily be scaled down for microfluidic applications. Finally, we demonstrate that such a device may be used to create a fluidic analogue of a fuse: the fluid flux through a channel may not rise above a given value.