Wed, 13 Jun 2018

16:00 - 17:00
C2

Applied mathematics in Czechoslovakia between the two world wars

Jan Kotůlek
(Technical University of Ostrava)
Abstract

The Czech lands were the most industrial part of the Austrian-Hungarian monarchy, broken up at the end of the WW1. As such, Czechoslovakia inherited developed industry supported by developed system of tertiary education, and Czech and German universities and technical universities, where the first chairs for applied mathematics were set up. The close cooperation with the Skoda company led to the establishment of joint research institutes in applied mathematics and spectroscopy in 1929 (1934 resp.).

The development of industry was followed by a gradual introduction of social insurance, which should have helped to settle social contracts, fight with pauperism and prevent strikes. Social insurance institutions set up mathematical departments responsible for mathematical and statistical modelling of the financial system in order to ensure its sustainability. During the 1920s and 1930s Czechoslovakia brought its system of social insurance up to date. This is connected with Emil Schoenbaum, internationally renowned expert on insurance (actuarial) mathematics, Professor of the Charles University and one of the directors of the General Institute of Pensions in Prague.

After the Nazi occupation in 1939, Czech industry was transformed to serve armament of the Wehrmacht and the social system helped the Nazis to introduce the carrot and stick policy to keep weapons production running up to early 1945. There was also strong personal discontinuity, as the Jews and political opponents either fled to exile or were brutally persecuted.

Fri, 09 Nov 2018

15:00 - 16:00
C1

Formulating a theory - mathematics in Thomson and Rutherford's collaboration on x-ray ionisation

Isobel Falconer
(University of St Andrews)
Abstract

In 1897 J.J. Thomson 'discovered' the electron. The previous year, he and his research student Ernest Rutherford (later to 'discover' theatomic nucleus), collaborated in experiments to work out why gases exposed to x-rays became conducting. 


This talk will discuss the very different mathematical educations of the two men, and the impact these differences had on their experimental investigation and the theory they arrived at. This theory formed the backdrop to Thomson's electron work the following year. 

Thu, 25 Jan 2018

17:00 - 18:00
L5

Was James Clerk Maxwell’s mathematics as good as his poetry?

Mark McCartney
(University of Ulster)
Abstract

James Clerk Maxwell (1831–1879) was, by any measure, a natural philosopher of the first rank who made wide-ranging contributions to science. He also, however, wrote poetry.

In this talk examples of Maxwell’s poetry will be discussed in the context of a biographical sketch. It will be  argued that not only was Maxwell a good poet, but that his poetry enriches our view of his life and its intellectual context.

Thu, 17 May 2018

16:00 - 17:30
L3

Peeling and the growth of blisters

Professor John Lister
(University of Cambridge)
Abstract

The peeling of an elastic sheet away from thin layer of viscous fluid is a simply-stated and generic problem, that involves complex interactions between flow and elastic deformation on a range of length scales. 

I will illustrate the possibilities by considering theoretically and experimentally the injection and spread of viscous fluid beneath a flexible elastic lid; the injected fluid forms a blister, which spreads by peeling the lid away at the  perimeter of the blister. Among the many questions to be considered are the mechanisms for relieving the elastic analogue of the contact-line problem, whether peeling is "by bending" or "by pulling", the stability of the peeling front, and the effects of a capillary meniscus when peeling is by air injection. The result is a plethora of dynamical regimes and asymptotic scaling laws.

Wed, 06 Dec 2017

11:30 - 13:00
L5

Hydrodynamics and acoustics of a free falling drop impact on a quiescent water layer

Yuli Chashechkin
(Russian Academy of Sciences)
Abstract

Using synchronized high-speed video camera, hydrophone and microphone we investigated flow patterns, the impact and secondary sound pulses emitted by oscillating bubbles. On the submerging  drop found short capillary waves produced by small secondary impact droplets. Picturesque filament and grid structures produced by colour drop of mixing fluid registered on the surface of the cavity and crown. Physical model includes discussion of the potential surface energy effects.

There is a deep connection between the stability of oil rigs, the bending of light during gravitational lensing and the act of life drawing. To understand each, we must understand how we view curved surfaces. We are familiar with the language of straight-line geometry – of squares, rectangles, hexagons - but curves also have a language - of folds, cusps and swallowtails - that few of us know.

Cosmological Parameters and the Baryon Density from CMB and Galaxy Fluctuations
Gaztañaga, E Barriga, J Santos, M Sarkar, S Astrophysics and Space Science Library volume 274 303-308 (2002)
Fri, 17 Nov 2017

10:00 - 11:00
L3

Call Routing Optimisation

Jonathan Welton
(Vodafone)
Abstract

The costs to Vodafone of calls terminating on other networks – especially fixed networks – are largely determined by the termination charges levied by other telecoms operators.  We interconnect to several other telecoms operators, who charge differently; within one interconnect operator, costs vary depending on which of their switching centres we deliver calls to, and what the terminating phone number is.  So, while these termination costs depend partly on factors that we cannot control (such as the number called, the call duration and the time of day), they are also influenced by some factors that we can control.  In particular, we can route calls within our network before handing them over from our network to the other telecoms operator; where this “handover” occurs has an impact on termination cost.  
Vodafone would like to develop a repeatable capability to determine call delivery cost efficiency and identify where network routing changes can be made to improve matters, and determine traffic growth forecasts.

Subscribe to