In the first Oxford Mathematics London Public Lecture, in partnership with the Science Museum, world-renowned mathematician Andrew Wiles lectured on his current work around Elliptic Curves followed by an-depth conversation with mathematician and broadcaster Hannah Fry.
In a fascinating interview Andrew talked about his own motivations, his belief in the importance of struggle and resilience and his recipe for the better teaching of his subject, a subject he clearly loves deeply.
Earth absorption
16:00
Mazur's Eisenstein ideal
Abstract
In his landmark 1976 paper "Modular curves and the Eisenstein ideal", Mazur studied congruences modulo p between cusp forms and an Eisenstein series of weight 2 and prime level N. He proved a great deal about these congruences, and also posed some questions: how many cusp forms of a given level are congruent to the Eisenstein series? How big is the extension generated by their coefficients? In joint work with Preston Wake, we give an answer to these questions in terms of cup products (and Massey products) in Galois cohomology. Time permitting, we may be able to indicate some partial generalisations of Mazur's results to square-free level.
Precise forecasting in the first few days of an infectious disease outbreak is challenging. However, Oxford Mathematical Biologist Robin Thompson and colleagues at Cambridge University have used mathematical modelling to show that for accurate epidemic prediction, it is necessary to develop and deploy diagnostic tests that can distinguish between hosts that are healthy and those that are infected but not yet showing symptoms. The data derived from these tests must then be integrated into epidemic models.
16:00
Some smooth applications of non-smooth Ricci curvature lower bounds
Abstract
After a brief introduction to the synthetic notions of Ricci curvature lower bounds in terms of optimal transportation, due to Lott-Sturm-Villani, I will discuss some applications to smooth Riemannian manifolds. These include: rigidity and stability of Levy- Gromov inequality, an almost euclidean isoperimetric inequality motivated by the celebrated Perelman’s Pseudo-Locality Theorem for Ricci flow. Joint work with F. Cavalletti.
The investment decisions made by the construction sector have an obvious impact on the supply of housing. Furthermore, Local Planning Authorities play a fundamental role in shaping this supply via town planning and, in particular, by approving or rejecting planning applications submitted by developers. However, the role of these two factors, as well as their interaction, has so far been largely neglected in models of the housing market.
Over the last five decades, software and computation has grown to become integral to the scientific process, for both theory and experimentation. A recent survey of RCUK-funded research being undertaken in 15 Russell Group universities found that 92% of researchers used research software, 67% reported that it was fundamental to their research, and 56% said they developed their own software.
16:00
A New Northcott Property for Faltings Height
Abstract
The Faltings height is a useful invariant for addressing questions in arithmetic geometry. In his celebrated proof of the Mordell and Shafarevich conjectures, Faltings shows the Faltings height satisfies a certain Northcott property, which allows him to deduce his finiteness statements. In this work we prove a new Northcott property for the Faltings height. Namely we show, assuming the Colmez Conjecture and the Artin Conjecture, that there are finitely many CM abelian varieties of a fixed dimension which have bounded Faltings height. The technique developed uses new tools from integral p-adic Hodge theory to study the variation of Faltings height within an isogeny class of CM abelian varieties. In special cases, we are able to use these techniques to moreover develop new Colmez-type formulas for the Faltings height.