Tue, 01 Mar 2016

15:45 - 16:45
L4

Topological Fukaya category and homological mirror symmetry

Nicolo Sibilla
(UBC Vancouver)
Abstract

The topological Fukaya category is a combinatorial model of the Fukaya category of exact symplectic manifolds which was first proposed by Kontsevich. In this talk I will explain work in progress (joint with J. Pascaleff and S. Scherotzke) on gluing techniques for the topological Fukaya category that are closely related to Viterbo functoriality. I will emphasize applications to homological mirror symmetry for three-dimensional CY LG models, and to Bondal's and Fang-Liu-Treumann-Zaslow's coherent constructible correspondence for toric varieties.  

Tue, 16 Feb 2016

14:15 - 15:15
L4

Formal degrees of unipotent discrete series representations of semisimple $p$-adic groups

Dan Ciubotaru
(Oxford)
Abstract

The formal degree is a fundamental invariant of a discrete series representation which generalizes the notion of dimension from finite dimensional representations. For discrete series with unipotent cuspidal support, a formula for formal degrees, conjectured by Hiraga-Ichino-Ikeda, was verified by Opdam (2015). For split exceptional groups, this formula was previously known from the work of Reeder (2000). I will present a different interpretation of the formal degrees of unipotent discrete series in terms of the nonabelian Fourier transform (introduced by Lusztig in the character theory of finite groups of Lie type) and certain invariants arising in the elliptic theory of the affine Weyl group. This interpretation relates to recent conjectures of Lusztig about `almost characters' of p-adic groups. The talk is based on joint work with Eric Opdam.

Tue, 08 Mar 2016
14:30
L3

Homogenized boundary conditions and resonance effects in Faraday cages

Dave Hewett
(University of Oxford)
Abstract

The Faraday cage effect is the phenomenon whereby electrostatic and electromagnetic fields are shielded by a wire mesh "cage". Nick Trefethen, Jon Chapman and I recently carried out a mathematical analysis of the two-dimensional electrostatic problem with thin circular wires, demonstrating that the shielding effect is not as strong as one might infer from the physics literature. In this talk I will present new results generalising the previous analysis to the electromagnetic case, and to wires of arbitrary shape. The main analytical tool is the asymptotic method of multiple scales, which is used to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. In the electromagnetic case one observes interesting resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells. This is joint work with Ian Hewitt.

Tue, 08 Mar 2016
14:30
L6

Parking in Trees and Mappings - Enumerative Results and a Phase Change Behaviour

Marie-Louise Lackner
(Technical University of Vienna)
Abstract
Parking functions were originally introduced in the context of a hashing procedure and have since then been studied intensively in combinatorics. We apply the concept of parking functions to rooted labelled trees and functional digraphs of mappings (i.e., functions $f : [n] \to [n]$). The nodes are considered as parking spaces and the directed edges as one-way streets: Each driver has a preferred parking space and starting with this node he follows the edges in the graph until he either finds a free parking space or all reachable parking spaces are occupied. If all drivers are successful we speak about a parking function for the tree or mapping. Via analytic combinatorics techniques we study the total number $F_{n,m}$ and $M_{n,m}$ of tree and mapping parking functions, respectively, i.e. the number of pairs $(T,s)$ (or $(f,s)$), with $T$ a size-$n$ tree (or $f : [n] \to [n]$ an $n$-mapping) and $s \in [n]^{m}$ a parking function for $T$ (or for $f$) with $m$ drivers, yielding exact and asymptotic results. We describe the phase change behaviour appearing at $m=\frac{n}{2}$ for $F_{n,m}$ and $M_{n,m}$, respectively, and relate it to previously studied combinatorial contexts. Moreover, we present a bijective proof of the occurring relation $n F_{n,m} = M_{n,m}$.
Fri, 11 Mar 2016
14:15
C3

Mathematical Modelling of Melt Lake Formation On An Ice Shelf

Samantha Buzzard
(University of Reading)
Abstract

The accumulation of surface meltwater on ice shelves can lead to the formation of melt lakes. These structures have been implicated in crevasse propagation and ice-shelf collapse; the Larsen B ice shelf was observed to have a large amount of melt lakes present on its surface just before its collapse in 2002. Through modelling the transport of heat through the surface of the Larsen C ice shelf, where melt lakes have also been observed, this work aims to provide new insights into the ways in which melt lakes are forming and the effect that meltwater filling crevasses on the ice shelf will have. This will enable an assessment of the role of meltwater in triggering ice-shelf collapse. The Antarctic Peninsula, where Larsen C is situated, has warmed several times the global average over the last century and this ice shelf has been suggested as a candidate for becoming fully saturated with meltwater by the end of the current century. Here we present results of a 1-D mathematical model of heat transfer through an idealized ice shelf. When forced with automatic weather station data from Larsen C, surface melting and the subsequent meltwater accumulation, melt lake development and refreezing are demonstrated through the modelled results. Furthermore, the effect of lateral meltwater transport upon melt lakes and the effect of the lakes upon the surface energy balance are examined. Investigating the role of meltwater in ice-shelf stability is key as collapse can affect ocean circulation and temperature, and cause a loss of habitat. Additionally, it can cause a loss of the buttressing effect that ice shelves can have on their tributary glaciers, thus allowing the glaciers to accelerate, contributing to sea-level rise.

Fri, 26 Feb 2016
14:15
C3

Benchmark problems for wave propagation in layered media

Chris Farmer
(University of Oxford)
Abstract

Accurate methods for the first-order advection equation, used for example in tracking contaminants in fluids, usually exploit the theory of characteristics. Such methods are described and contrasted with methods that do not make use of characteristics.

Then the second-order wave equation, in the form of a first-order system, is considered. A review of the one-dimensional theory using solutions of various Riemann problems will be provided. In the special case that the medium has the ‘Goupillaud’ property, that waves take the same time to travel through each layer, one can derive exact solutions even when the medium is spatially heterogeneous. The extension of this method to two-dimensional problems will then be discussed. In two-dimensions it is not apparent that exact solutions can be found, however by exploiting a generalised Goupillaud property, it is possible to calculate approximate solutions of high accuracy, perhaps sufficient to be of benchmark quality. Some two-dimensional simulations, using exact one-dimensional solutions and operator splitting, will be described and a numerical evaluation of accuracy will be given.

Fri, 12 Feb 2016
14:15
C3

Models of ice sheet dynamics and meltwater lubrication

Ian Hewitt
(University of Oxford)
Abstract

In this talk I will review mathematical models used to describe the dynamics of ice sheets, and highlight some current areas of active research.  Melting of glaciers and ice sheets causes an increase in global sea level, and provides many other feedbacks on isostatic adjustment, the dynamics of the ocean, and broader climate patterns.  The rate of melting has increased in recent years, but there is still considerable uncertainty over  why this is, and whether the increase will continue.  Central to these questions is understanding the physics of how the ice intereacts with the atmosphere, the ground on which it rests, and with the ocean at its margins.  I will given an overview of the fluid mechanical problems involved and the current state of mathematical/computational modelling.  I will focus particularly on the issue of changing lubrication due to water flowing underneath the ice, and discuss how we can use models to rationalise observations of ice speed-up and slow-down.

Fri, 04 Mar 2016

12:00 - 13:00
L1

The effect of domain shape on reaction-diffusion equations

Henri Berestycki
(EHESS)
Abstract

I will discuss some reaction-diffusion equations of bistable type motivated by biology and medicine. The aim is to understand the effect of the shape of the domain on propagation or on blocking of advancing waves. I will first describe the motivations of these questions and present a result about the existence of generalized “transition waves”. I will then discuss various geometric conditions that lead to either blocking, or partial propagation, or complete propagation. These questions involve new qualitative results for some non-linear elliptic and parabolic partial differential equations. I report here on joint work with Juliette Bouhours and Guillemette Chapuisat.

Subscribe to