Mon, 29 Feb 2016
14:15
L4

The topology of area-minimizing surfaces in manifolds of non-negative curvature

Otis Chodosh
(Cambridge)
Abstract

Work of Schoen--Yau in the 70's/80's shows that area-minimizing (actually stable) two-sided surfaces in three-manifolds of non-negative scalar curvature are of a special topological type: a sphere, torus, plane or cylinder. The torus and cylinder cases are "borderline" for this estimate. It was shown by Cai--Galloway in the late 80's that the torus can only occur in a very special ambient three manifold. We complete the story by showing that a similar result holds for the cylinder. The talk should be accessible to those with a basic knowledge of curvature in Riemannian geometry.

Tue, 09 Feb 2016

14:00 - 15:00
L4

Virtual signed Euler characteristics and the Vafa-Witten equations

Richard Thomas
(Imperial College London)
Abstract

I will describe 5 definitions of Euler characteristic for a space with perfect obstruction theory (i.e. a well-behaved moduli space), and their inter-relations. This is joint work with Yunfeng Jiang. Then I will describe work of Yuuji Tanaka on how to this can be used to give two possible definitions of Vafa-Witten invariants of projective surfaces in the stable=semistable case.

Mon, 07 Mar 2016

12:00 - 13:00
L5

3d N=2 dualities with monopoles

Sara Pasquetti
(Surrey)
Abstract

I will present several new  3d N=2 dualities with super-potentials involving monopole operators. Some of the theories that I will discuss describe systems of D3 branes ending on pq-webs. In these cases  3d mirror symmetry is a consequence of S-duality.

 

Mon, 29 Feb 2016

12:00 - 13:00
L5

Black holes, entropy, and mock modular forms

Sameer Murthy
(Kings College London)
Abstract

It was discovered in the 1970s that black holes are thermodynamic objects carrying entropy, thus suggesting that they are really an ensemble of microscopic states. This idea has been realized in a remarkable manner in string theory, wherein one can describe these ensembles in a class of models. These ensembles are known, however, to contain configurations other than isolated black holes, and it remains an outstanding problem to precisely isolate a black hole in the microscopic ensemble. I will describe how this problem can be solved completely in N=4 string theory. The solution involves surprising relations to mock modular forms -- a class of functions first discovered by S. Ramanujan about 95 years ago. 

Mon, 15 Feb 2016

12:00 - 13:00
L5

Tops as Building Blocks for G2 Manifolds

Andreas Braun
(Oxford)
Abstract

A large number of examples of compact G2 manifolds, relevant to supersymmetric compactifications of M-Theory to four dimensions, can be constructed by forming a twisted connected sum of two appropriate building blocks times a circle. These building blocks, which are appropriate K3-fibred threefolds, are shown to have a natural and elegant construction in terms of tops, which parallels the construction of Calabi-Yau manifolds via reflexive polytopes.

Mon, 08 Feb 2016

12:00 - 13:00
L5

Causality constraints on the graviton 3-point vertex

Jose Edelstein
(Santiago de Compostela)
Abstract

I will consider higher derivative corrections to the graviton 3-point coupling within a weakly coupled theory of gravity. Lorentz invariance allows further structures beyond that of Einstein’s theory. I will argue that these structures are constrained by causality, and show that the problem cannot be fixed by adding conventional particles with spins J ≤ 2, but adding an infinite tower of massive particles with higher spins. Implications of this result in the context of AdS/CFT, quantum gravity in asymptotically flat space-times, and non-Gaussianity features of primordial gravitational waves are discussed.

 
 
 
Mon, 22 Feb 2016
16:30
C1

Congruence and non-congruence level structures on elliptic curves: a hands-on tour of the modular tower

Alexander Betts
((Oxford University))
Abstract
Classically, one puts an algebraic structure on certain "congruence" quotients of the upper half plane by interpreting them as spaces parametrising elliptic curves with certain level structures on their torsion subgroups. However, the non-congruence quotients don't admit such a straightforward description.
 
We will sketch the classical theory of congruence modular curves and level structures, and then discuss a preprint by W. Chen which extends the above notions to non-congruence modular curves by considering so-called Teichmueller level structures on the fundamental groups of punctured elliptic curves.
Subscribe to