A booklet about networks literacy developed by Mason Porter, Fellow of Somerville College and Professor of Nonlinear and Complex Systems in the University of Oxford's Mathematical Institute, in collaboration with colleagues from the USA, could help people understand all types of networks from social media to rabbit warrens. Mason was part of a team of over 30 network-science researchers, educators, teachers, and students who have written the booklet on networks literacy that schools can adapt to teach students the core concepts about networks.

Tue, 17 Nov 2015

14:30 - 15:00
L5

A GPU Implementation of the Filtered Lanczos Procedure

Jared Aurentz
(University of Oxford)
Abstract

This talk describes a graphics processing unit (GPU) implementation of the Filtered Lanczos Procedure for the solution of large, sparse, symmetric eigenvalue problems. The Filtered Lanczos Procedure uses a carefully chosen polynomial spectral transformation to accelerate the convergence of the Lanczos method when computing eigenvalues within a desired interval. This method has proven particularly effective when matrix-vector products can be performed efficiently in parallel. We illustrate, via example, that the Filtered Lanczos Procedure implemented on a GPU can greatly accelerate eigenvalue computations for certain classes of symmetric matrices common in electronic structure calculations and graph theory. Comparisons against previously published CPU results suggest a typical speedup of at least a factor of $10$.

Mon, 09 Nov 2015

16:00 - 17:00
C2

Characterising the integers in the rationals

Philip Dittmann
(Oxford University)
Abstract

Starting from Hilbert's 10th problem, I will explain how to characterise the set of integers by non-solubility of a set of polynomial equations and discuss related challenges. The methods needed are almost entirely elementary; ingredients from algebraic number theory will be explained as we go along. No knowledge of first-order logic is necessary.

Tue, 17 Nov 2015

14:00 - 14:30
L5

A fast hierarchical direct solver for singular integral equations defined on disjoint boundaries and application to fractal screens

Mikael Slevinsky
(University of Oxford)
Abstract
Olver and I recently developed a fast and stable algorithm for the solution of singular integral equations. It is a new systematic approach for converting singular integral equations into almost-banded and block-banded systems of equations. The structures of these systems lend themselves to fast direct solution via the adaptive QR factorization. However, as the number of disjoint boundaries increases, the computational effectiveness deteriorates and specialized linear algebra is required.

Our starting point for specialized linear algebra is an alternative algorithm based on a recursive block LU factorization recently developed by Aminfar, Ambikasaran, and Darve. This algorithm specifically exploits the hierarchically off-diagonal low-rank structure arising from coercive singular integral operators of elliptic partial differential operators. The hierarchical solver involves a pre-computation phase independent of the right-hand side. Once this pre-computation factorizes the operator, the solution of many right-hand sides takes a fraction of the original time. Our fast direct solver allows for the exploration of reduced-basis problems, where the boundary density for any incident plane wave can be represented by a periodic Fourier series whose coefficients are in turn expanded in weighted Chebyshev or ultraspherical bases.
 
A fractal antenna uses a self-similar design to achieve excellent broadband performance. Similarly, a fractal screen uses a fractal such as a Cantor set to screen electromagnetic radiation. Hewett, Langdon, and Chandler-Wilde have shown recently that the density on the nth convergent to a fractal screen converges to a non-zero element in the suitable Sobolev space, resulting in a physically observable and persistent scattered field as n tends to infinity. We use our hierarchical solver to show numerical results for prefractal screens.
Search for dark matter annihilation in the Galactic Center with IceCube-79
Abraham, K Ackermann, M Adams, J Aguilar, J Ahlers, M Ahrens, M Altmann, D Anderson, T Archinger, M Arguelles, C Arlen, T Auffenberg, J Bai, X Barwick, S Baum, V Bay, R Beatty, J Tjus, J Becker, K Beiser, E BenZvi, S Berghaus, P Berley, D Bernardini, E European Physical Journal C volume 75 issue 10 (01 Oct 2015)
Subscribe to